Skip to main content

Advertisement

Log in

A Medical Software System for Volumetric Analysis of Cerebral Pathologies in Magnetic Resonance Imaging (MRI) Data

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings—including a seed point—are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies—glioblastoma multiforme, pituitary adenomas and cerebral aneurysms– and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kleihues, P., Louis, D. N., Scheithauer, B. W., et al., The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61(3):215–229, 2002.

    Google Scholar 

  2. Kortmann, R. D., Jeremic, B.,Weller, M., Plasswilm, L., and Bamberg, M., Radiochemotherapy of malignant gliom in adults. Clinical experiences. Strahlenther. Onkol. 179(4):219–232, 2003.

    Google Scholar 

  3. Lacroix, M., Abi-Said, D., Fourney, D. R., et al., A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection and survival. J Neurosurg 95:190–198, 2001.

    Google Scholar 

  4. Weber, M.-A., Zoubaa, S., Politi, M., Grunwald, I., and Essig, M., Sellar tumors (in German). Der Radiologe 47(6):492–500, 2007. Springer Berlin/Heidelberg.

    Article  Google Scholar 

  5. Biller, B. M. K., Colao, A., Petersenn, S., Bonert, V. S., and Boscaro, M., Prolactinomas, Cushing’s disease and acromegaly: debating the role of medical therapy for secretory pituitary adenomas. BMC Endocrine Disorders 10(1):10, 2010.

    Article  Google Scholar 

  6. Buchfelder, M., and Schlaffer, S., Surgical treatment of pituitary tumours. Best Pract. Res., Clin. Endocrinol. Metab 23(5):677–692, 2009.

    Article  Google Scholar 

  7. Molyneux, A. J., et al., International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with unruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274, 2002.

    Article  Google Scholar 

  8. Szwarc, P., Kawa, J., Bobek-Billewicz, B., and Pietka, E., Segmentation of brain tumours in MR images using fuzzy clustering techniques, proceedings of computer assisted radiology and surgery (CARS). Geneva, Switzerland, 2010.

    Google Scholar 

  9. Zou, K. H., Warfield, S. K., Bharatha, A., et al., Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Acad Radiol 11(2):178–189, 2004.

    Article  Google Scholar 

  10. Angelini, E. D., et al., Glioma Dynamics and Computational Models: A Review of Segmentation, Registration, and In Silico Growth Algorithms and their Clinical Applications. Current Med. Imaging Rev. (3):262–76, 2007.

  11. Gibbs, P., Buckley, D. L., Blackband, S. J., et al., Tumour volume determination from MR images by morphological segmentation. Phys. Med. Biol. 41(11): 2437–46, 1996.

    Google Scholar 

  12. Letteboer, M. M. J., Olsen, O. F., Dam, E. B., et al., Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. Acad Radiol 11:1125–1138, 2004.

    Article  Google Scholar 

  13. Droske, M., Meyer, B., Rumpf, M., et al., An adaptive level set method for interactive segmentation of intracranial tumors. Neurol Res 27(4):363–370, 2005.

    Article  Google Scholar 

  14. Clark, M., Hall, L. O., Goldgof, D. B., et al., Automatic tumor segmentation using knowledge-based techniques. IEEE Trans. Med Imag (TMI) 17(2):187–201, 1998.

    Article  Google Scholar 

  15. Prastawa, M., Bullitt, E., Ho, S., et al., A brain tumor segmentation framework based on outlier detection. Med Image Anal 8:275–283, 2004.

    Article  Google Scholar 

  16. Sieg, C., Handels, H., and Pöppl, S. J., Automatic segmentation of contrast-enhanced brain tumors in multispectral MR-images with backpropagation-networks (in German). Bildverarbeitung für die Medizin (BVM), Springer Press, pp. 347–351, 2001.

  17. Neubauer, A., et al., Advanced virtual endoscopic pituitary surgery. IEEE Trans. Vis. Comput. Graph. (TVCG) 11(5):497–507, 2005.

    Article  Google Scholar 

  18. Wolfsberger, S., et al., Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery. Neurosurgery 59(5):1001–1010, 2006.

    Google Scholar 

  19. Felkel, P., Wegenkittl, R., and Bruckschwaiger, M., Implementation and complexity of the watershed-from-markers algorithm computed as a minimal cost forest. Proceedings of Eurographics’01, pp. 26–35, 2001.

  20. Descoteaux, M., Audette, M., Chinzei, K., and Siddiqi, K., Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. Comput Aided Surg 11(5):247–255, 2006.

    Google Scholar 

  21. Buhk, J.-H., et al., Tumor volume of growth hormone-secreting pituitary adenomas during treatment with pegvisomant: a prospective multicenter study. J Clin Endocrinol Metab 95(2):552–558, 2010.

    Article  Google Scholar 

  22. Gondim, A. J., et al., Intrasellar pressure and tumor volume in pituitary tumor. Arq Neuropsiquiatr 64(4):971–975, 2006.

    Article  Google Scholar 

  23. Jimenez, C., et al., Follow-up of pituitary tumor volume in patients with acromegaly treated with pegvisomant in clinical trials. Eur J Endocrinol 159:517–523, 2008.

    Article  Google Scholar 

  24. Honegger, J., Zimmermann, S., Psaras, T., Petrick, M., Mittelbronn, M., Ernemann, U., Reincke, A., and Dietz, K., Growth modelling of non-functioning pituitary adenomas in patients referred for surgery. Eur J Endocrinol 158:287–294, 2008.

    Article  Google Scholar 

  25. Pamir, M. N., Kiliç, T., Belirgen, M., Abacioğlu, U., and Karabekiroğlu, N., Pituitary adenomas treated with gamma knife radiosurgery: volumetric analysis of 100 cases with minimum 3 year follow-up. Neurosurgery 61(2):270–80, 2007. discussion 280.

    Article  Google Scholar 

  26. Jones, A. P., and Keogh, A. J., A simple method of estimating the size of large pituitary adenomas, Acta Neurochir (Wien), 107:61–62, Springer Press, 1990.

    Google Scholar 

  27. Egger, J., Bauer, M. H. A., Kuhnt, D., Kappus, C., Carl, B., Freisleben, B., and Nimsky, Ch., A flexible semi-automatic approach for glioblastoma multiforme segmentation. In: Proceedings of International Biosignal Processing Conference, DGBMT, Berlin, Germany, 2010.

  28. Egger, J., Bauer, M. H. A., Kuhnt, D., Freisleben, B., Nimsky, Ch., Pituitary adenoma segmentation, In: Proceedings of International Biosignal Processing Conference, DGBMT, Berlin, Germany, 2010.

  29. Egger, J., Bauer, M. H. A., Kuhnt, D., Carl, B., Kappus, C., Freisleben, B., and Nimsky, Ch., Nugget-cut: a segmentation scheme for spherically- and elliptically-shaped 3D objects, 32nd annual symposium of the German association for pattern recognition (DAGM), LNCS 6376, Springer Press, pp. 383–392, 2010.

  30. Boykov, Y., and Kolmogorov, V., An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 26(9), pp. 1124–1137, 2004.

    Google Scholar 

  31. Egger, J., Mostarkic, Z., Großkopf, S., and Freisleben, B., A fast vessel centerline extraction algorithm for catheter simulation, 20th IEEE international symposium on computer- based medical systems, Maribor, Slovenia, pp. 177–182, IEEE Press, 2007.

  32. Egger, J., O’Donnell, T., Hopfgartner, C., and Freisleben, B., Graph-based tracking method for aortic thrombus segmentation, proceedings of 4th European congress for medical and biomedical engineering, Engineering for health. Springer Press, Antwerp, pp. 584–587, 2008.

    Google Scholar 

  33. Egger, J., Freisleben, B., Setser, R., Renapuraar, R., Biermann, C., and O’Donnell, T., Aorta segmentation for stent simulation, 12th International conference on medical image computing and computer assisted intervention (MICCAI), Cardiovascular interventional imaging and biophysical modelling workshop, p. 10, London, United Kingdom, 2009.

  34. Neugebauer, P. J., and Klein, K., Adaptive triangulation of objects reconstructed from multiple range images, in Proc. of IEEE Visualization 97, ACM Press, pp. 41–44, 1997.

  35. Dachille, F., and Kaufman, A., Incremental triangle voxelization. Proceedings of graphics interface, pp. 205–212, 2000.

  36. Nobels, F. R. E., et al., Long-term treatment with the dopamine agonist quinagolide of patients with clinically non-functioning pituitary adenoma. Eur J Endocrinol 143:615–621, 2000.

    Article  Google Scholar 

  37. Korsisaari, N., et al., Blocking vascular endothelial growth factor-a inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin Cancer Res 14(1):249–258, 2008.

    Article  Google Scholar 

  38. Egger, J., Bauer, M. H. A., Kuhnt, D., Freisleben, B., and Nimsky, Ch., Min-Cut-Segmentation of WHO Grade IV Gliomas Evaluated against Manual Segmentation. XIX Congress of the European Society for Stereotactic and Functional Neurosurgery, Athens, Greece, 2010.

  39. Egger, J., Bauer, M. H. A., Kuhnt, D., Kappus, C., Carl, B., Freisleben, B., and Nimsky, Ch., Evaluation of a Novel Approach for Automatic Volume Determination of Glioblastomas Based on Several Manual Expert Segmentations. In: Proceedings of 44. Jahrestagung der DGBMT, Rostock, Germany, 2010.

  40. Cootes, T. F., and Taylor, C. J., Active shape models - ‘smart snakes’, Proceedings of the British machine vision conference pp. 266–275, 1992.

  41. Cootes, T. F., and Taylor, C. J., Statistical models of appearance for computer vision. Technical report, University of Manchester, 2004.

Download references

Acknowledgements

First of all the authors want to thank all reviewers for their thoughtful comments. The authors would also like to thank the physicians Dr. Daniela Kuhnt, Dr. Malgorzata Kolodziej, Dr. Barbara Carl and Christoph Kappus for (a) performing the manual segmentations of the medical images and therefore providing the ground truth for the evaluation and (b) helping with the medical introduction. Furthermore, the authors would like to thank Fraunhofer MeVis in Bremen, Germany, for their collaboration and especially Prof. Dr. Horst K. Hahn for his support.

Conflict of interest statement

All authors in this paper have no potential conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Egger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egger, J., Kappus, C., Freisleben, B. et al. A Medical Software System for Volumetric Analysis of Cerebral Pathologies in Magnetic Resonance Imaging (MRI) Data. J Med Syst 36, 2097–2109 (2012). https://doi.org/10.1007/s10916-011-9673-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9673-6

Keywords

Navigation