Abstract
There is an ever-increasing interest in the development of automatic medical diagnosis systems due to the advancement in computing technology and also to improve the service by medical community. The knowledge about health and disease is required for reliable and accurate medical diagnosis. Diabetic Retinopathy (DR) is one of the most common causes of blindness and it can be prevented if detected and treated early. DR has different signs and the most distinctive are microaneurysm and haemorrhage which are dark lesions and hard exudates and cotton wool spots which are bright lesions. Location and structure of blood vessels and optic disk play important role in accurate detection and classification of dark and bright lesions for early detection of DR. In this article, we propose a computer aided system for the early detection of DR. The article presents algorithms for retinal image preprocessing, blood vessel enhancement and segmentation and optic disk localization and detection which eventually lead to detection of different DR lesions using proposed hybrid fuzzy classifier. The developed methods are tested on four different publicly available databases. The presented methods are compared with recently published methods and the results show that presented methods outperform all others.









Similar content being viewed by others
References
Amos, A. F., McCarty, D. J., and Zimmet, P., The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabet. Med., 14:S1–S85, 1997.
Kohner, E. M., Aldington, S. J., Stratton, I. M., Manley, S. E., Holman, R. R., Matthews, D. R., et al., United Kingdom prospective diabetes study, 30: Diabetic retinopathy at diagnosis of noninsulin-dependent diabetes mellitus and associated risk factors. Arch. Ophthalmol. 116(3):297–303, 1998.
Molven, A., Ringdal, M., Nordbo, A. M., Raeder, H., Stoy, J., Lipkind, G. M., et al., Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes 57(4):1131–1135, 2008.
Lee, S. C., Lee, E. T., Kingsley, R. M., Wang, Y., Russell, D., Klein, R., and Wanr, A., Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts. Graefes Arch. Clin. Exp. Ophtalmol. 119(4):509–515, 2001.
Usher, D., Dumskyj, M., Himaga, M., Williamson, T. H., Nussey, S., and Boyce, J., Automated detection of diabetic retinopathy in digital retinal images: A tool for diabetic retinopathy screening. Diabetes UK. Diabet. Med. 21(1): 84–90, 2003.
Sinthanayothin, C., Kongbunkiat, V., Phoojaruenchanachain, S., and Singlavanija, A., Automated screening system for diabetic retinopathy. In: Proc. of the 3rd International Symposium on Image and Signal Processing and Analysis. pp. 915–920, 2003.
Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R., Classification and localisation of diabeticrelated eye disease. In: Proc. 7th European Conference on Computer Vision. LNCS. Vol. 2353, pp. 502–516. Berlin, Heidelberg: Springer, 2002.
Zhou, L., Rzeszotarski, M. S., Singerman, L. J., and Chokreff, J. M., The detection and quantification of retinopathy using digital angiograms. IEEE Trans. Med. Imag. 13(4):619–626, 1994.
Soares, J. V. B., Leandro, J. J. G., Cesar, R. M., Jelinek, H. F., and Cree, M. J., Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9):1214–1222, 2006.
Nayak, J., Subbanna Bhat, P., Rajendra Acharya, U., Lim, C. M., and Kagathi, M., Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 32:107–115, 2008.
Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4):501–509, 2004.
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3)263–269, 1989.
Reza, A. W., Eswaran, C., and Dimyati, K., Diagnosis of diabetic retinopathy: Automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation. J. Med. Syst. 2010. doi:10.1007/s10916-009-9426-y
Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, C. V., Tanenbaum, H. L., Majerovics, A., and Singh, H., Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans. Biomed. Eng. 53(6):1084–1098, 2006.
Sinthanayothin, C., Boyce, J. A., Cook, H. L., and Williamson, T. H., Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83:902–910, 1999.
Hoover, A., Goldbaum, M., Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imag. 22(8):951–958, 2003.
Tariq, A., and Akram, M. U., An automated system for colored retinal image background and noise segmentation. In: IEEE Symposium on Industrial Electronics and Applications (ISIEA 2010). pp. 405–409, 2010.
Vasilevski, A., and Siddiqi, K., Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12):1565–1578, 2002.
Jiang, X., and Mojon, D.: Adaptive local thresholding by verificationbased multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1):131–137, 2003.
Foracchia, M., Grisam, E., and Ruggeri, A., Detection of the optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imag. 23(10):1189–1195, 2004.
Li, H., and Chutatape, O., Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2):246–254, 2004.
Mendona, A. M., Campilho, A. J., Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9):1200–1213, 2006.
Antoine, J. P., Carette, P., Murenzi, R., and Piette, B., Image analysis with two-dimensional continuous wavelet transform. Signal Process. 31(3):241–272, 1993.
Gonzalez, R. C., and Woods, R. E., Digital image processing. Second edition. Englewood Cliffs, NJ: Prentice Hall, 2002.
Sekhar, S., Al-Nuaimy, W., Nandi, A. K., Automated localisation of retinal optic disk using Hough transform, In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. pp. 1577–1580, 14–17 May 2008.
Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., Pietilä, J., DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms. Technical Report, 2006.
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen A., Voutilainen R., Uusitalo, H., Kälviäinen, H., Pietilä, J., DIARETDB1 diabetic retinopathy database and evaluation protocol, Technical report, 2007.
Walter, T., Klein, J.-C., Massin, P., and Erginay, A., A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imag. 21(10):1236–1243, 2002.
Akram, M. U., Khan, A., Iqbal, K., and Butt, W. H., Retinal image: Optic disk localization and detection. In: Image Analysis and Recognition, Lecture Notes in Computer Science, LNCS 6112, Portugal. pp. 40–49, Berlin, Heidelberg: Springer, 2010.
Niemeijer, M., Abramoff, M. D., and Ginneken, B. V., Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans. Med. Imag. 28(5):775–785, 2009.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Akram, U.M., Khan, S.A. Automated Detection of Dark and Bright Lesions in Retinal Images for Early Detection of Diabetic Retinopathy. J Med Syst 36, 3151–3162 (2012). https://doi.org/10.1007/s10916-011-9802-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10916-011-9802-2