Skip to main content

Advertisement

Log in

Design of a Fuzzy-based Decision Support System for Coronary Heart Disease Diagnosis

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In the present paper, a fuzzy rule-based system (FRBS) is designed to serve as a decision support system for Coronary heart disease (CHD) diagnosis that not only considers the decision accuracy of the rules but also their transparency at the same time. To achieve the two above mentioned objectives, we apply a multi-objective genetic algorithm to optimize both the accuracy and transparency of the FRBS. In addition and to help assess the certainty and the importance of each rule by the physician, an extended format of fuzzy rules that incorporates the degree of decision certainty and importance or support of each rule at the consequent part of the rules is introduced. Furthermore, a new way for employing Ensemble Classifiers Strategy (ECS) method is proposed to enhance the classification ability of the FRBS. The results show that the generated rules are humanly understandable while their accuracy compared favorably with other benchmark classification methods. In addition, the produced FRBS is able to identify the uncertainty cases so that the physician can give a special consideration to deal with them and this will result in a better management of efforts and tasks. Furthermore, employing ECS has specifically improved the ability of FRBS to detect patients with CHD which is desirable feature for any CHD diagnosis system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lilly, L., Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty. 5 ed. (Lippincott Williams and Wilkins, Philadelphia, 2010).

    Google Scholar 

  2. Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., et al., Heart disease and stroke statistics 2011 update: a report from the American Heart Association. Circulation 123:e18–e209, 2011.

    Article  Google Scholar 

  3. Mathers C.D., and Loncar, D., Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:2011–2030, 2006.

    Article  Google Scholar 

  4. Reddy, K.S., Cardiovascular diseases in the developing countries: Dimensions, determinants, dynamics and directions for public health action. Public Health Nutr. 5:231–237, 2002.

    Article  Google Scholar 

  5. Yan, H.M., Jiang, Y.T., Zheng, J., Peng, C.L., and Li, Q.H., A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. 30:272–281, 2006.

    Article  Google Scholar 

  6. Adlassnig, K.P. Fuzzy set theory in medical diagnosis. IEEE Trans. Systems Man Cybernet. 16:260–265, 1986.

    Article  Google Scholar 

  7. Escolar, E., Weigold, G., Fuisz, A., and Weissman, N.J., New imaging techniques for diagnosing coronary artery disease. Can. Med. Assoc. J. 174:487–495, 2006.

    Article  Google Scholar 

  8. Henneman, M. M., Schuijf, J. D., van der Wall, E. E., and Bax, J. J., Non-invasive anatomical and functional imaging for the detection of coronary artery disease, Br. Med. Bull. 79-80:187–202, 2006.

    Article  Google Scholar 

  9. Naghavi, M., Falk, E., Hecht, H.S., Jamieson, M.J., Kaul, S., Daniel, D., Berman et al., From vulnerable plaque to vulnerable patient: Part III. Introducing a new paradigm for the prevention of heart attack; identification and treatment of the asymptomatic vulnerable patient. Screening for Heart Attack Prevention And Education (SHAPE) task force report. Executive Summary, Am. J. Cardiol. 2006. doi:10.1016.

    Google Scholar 

  10. Gibbons, R. J., Balady, G. J., Bricker, J. T., Chaitman, B. R., Fletcher, G. F., Froelicher, V. F., et al., ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 106:1883–1892, 2002.

    Article  Google Scholar 

  11. Raggi, P., Callister, T.Q., Cooil, B., He, Z.X., Lippolis, N.J., Russo, D.J., et al., Identification of patients at increased risk of first unheralded acute myocardial infarction by electron beam computed tomography. Circulation 101:850–855, 2000.

    Article  Google Scholar 

  12. Wagner, A., Mahrholdt, H., Holly, T.A., Elliott, M.D., Regenfus, M., Parker, M., et al., Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379, 2003.

    Article  Google Scholar 

  13. Di Carli, M.F., Davidson, M., Little, R., Khanna, S., Mody, F.V., Brunken, R.C., et al., Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am. J. Cardiol. 73:527–533, 1994.

    Article  Google Scholar 

  14. Rainbird, A.J., Mulvagh, S.L., Oh, J.K., McCully, R.B., Klarich, K.W., Shub, C., et al., Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J. Am. Soc. Echocardiogr 14:378–385, 2001.

    Article  Google Scholar 

  15. Kim, W.Y., Danias, P.G., Stuber, M., Flamm, S.D., Plein, S., Nagel, E., et al., Coronary magnetic resonance angiography for the detection of coronary stenoses. N. Engl. J. Med. 345:1863–1869, 2001.

    Article  Google Scholar 

  16. Nieman, K., Cademartiri, F., Lemos, P.A., Raaijmakers, R., Pattynama, P.M., and de Feyter, P.J., Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054, 2002.

    Article  Google Scholar 

  17. Yardimci, A., Soft computing in medicine. Applied Soft Computing 9:1029–1043, 2009.

    Article  Google Scholar 

  18. Akay, M., Noninvasive diagnosis of coronary artery disease using a neural network algorithm. Biol. Cybern. 67:361–367, 1992.

    Article  Google Scholar 

  19. Lapuerta, P., Azen, S. P., and Labree, L., Use of neural networks in predicting the risk of coronary artery disease. Comput. Biomed. Res. 28:38–52, 1995.

    Article  Google Scholar 

  20. Goodenday, L. S., Cios, K. J., and Shin, I., Identifying coronary stenosis using an image recognition neural network. IEEE Eng. Med. Biol. Mag. 16:139–144, 1997.

    Article  Google Scholar 

  21. Reategui, E.B., Campbell, J.A., and Leao, B.F., Combining a neural network with case-based reasoning in a diagnostic system. Artif. Intell. Med. 9:5–27, 1997.

    Article  Google Scholar 

  22. Azuaje, F., Dubitzky, W., Lopes, P., Black, N., and Adamsom, K., Predicting coronary disease risk based on short-term RR interval measurements: A neural network approach. Artif. Intell. Med. 15:275–297, 1999.

    Article  Google Scholar 

  23. Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Predictions of coronary artery stenosis by artificial neural network. Artif. Intell. Med. 18:187–203, 2000.

    Article  Google Scholar 

  24. Lewenstein, K., Radial basis function neural network approach for the diagnosis of coronary artery disease based on the standard electrocardiogram exercise test. Med. Biol. Eng. Comput. 39:1–6, 2001.

    Article  Google Scholar 

  25. Scott, J. A., Aziz, K., Yasuda, T., and Gewirtz, H., Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks. Coron. Artery Dis. 15:427–434, 2004.

    Article  Google Scholar 

  26. Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Neural network predictions of significant coronary artery stenosis in men. Artif. Intell. Med. 34:151–161, 2005.

    Article  Google Scholar 

  27. Babaoglu, I., Baykan, O.K., Aygul, N., Ozdemir, K., Bayrak, M., Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization, Expert Syst. Appl. 36:2562–2566, 2009.

    Article  Google Scholar 

  28. Babaoğlu, İ., Baykan, Ö. K., Aygul, N., Ozdemir, K., and Bayrak, M., A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease, In: Papasratorn, K., Lavangnananda,W., Chutimaskul, Vanijja, V. (Eds.), Advances in Information Technology, Communications in Computer and Information Science. Vol. 114, pp. 18–26. Berlin Heidelberg: Springer, 2010.

    Google Scholar 

  29. Zhidong, Z., Noninvasive Diagnosis of Coronary Artery Disease Based on Instantaneous Frequency of Diastolic Murmurs and SVM. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China. 5651–5654, 2005.

  30. Comak, E., Arslan, A., Turkoglu, I., A Decision Support System Based on Support Vector Machines for Diagnosis of The Heart Valve Diseases. Comput. Biol. Med. 37:21–27, 2007.

    Article  Google Scholar 

  31. Babaoglu, I., Findik, O., and Bayrak, M., Effects of principle component analysis on assessment of coronary artery diseases using support vector machine. Expert Syst. Appl. 37:2182–2185, 2010.

    Article  Google Scholar 

  32. Ainon, R.N., Bulgiba, A.M., and Lahsasna, A., AMI Screening Using Linguistic Fuzzy Rules, J. Med. Syst., Springer Netherlands. doi:10.1007/s10916-010-9491-2. Published online 2 May, 2010.

  33. Casillas, J., Cordn, O., Herrera, F., and Magdalena, L., Interpretability Issues in Fuzzy Modeling. Studies in Fuzziness and Soft Computing vol. 128, Springer, Heidelberg 2003.

  34. Bojarczuk, C.C., Lopes, H.S., and Freitas, A.A., Genetic programming for knowledge discovery in chest pain diagnosis, IEEE Eng. Med. Biol. Mag. (Special issue on data mining and knowledge discovery) 19:38–44, 2000.

    Google Scholar 

  35. De Backer, G., Ambrosioni, E., Borch-Johnsen, K., Brotons, C., Cifkova, R., Dallongeville, J., et al., European guidelines on cardiovascular disease prevention in clinical practice: Third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts), Eur. Heart J. 24:1601–1610, 2003.

    Article  Google Scholar 

  36. Dubois, D., and Prade, H., What are fuzzy rules and how to use them. Fuzzy Sets Syst. 84:169–185, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  37. Bates, J.H.T., and Young, M.P., Applying fuzzy logic to medical decision making in the intensive care unit, Am. J. Respir. Crit. Care Med. 167:948–952, 2003.

    Article  Google Scholar 

  38. Akay, Y.M., Akay, M., Welkowitz, W., Kostis, J., Noninvasive detection of coronary artery disease, IEEE Eng. Med. Biol. Mag. 13:761–764, 1994.

    Article  Google Scholar 

  39. Cios, K.J., Goodenday, L.S., Shah, K.K., Serpen, G., A novel algorithm for classification of SPECT images of a human heart.In: Proc. 9th IEEE Symp. on Computer-Based Medical Systems, IEEE Comput. Soc. Press, Los Alamitos, CA, USA, 1–5, 1996.

  40. Jain, R., Mazumdar, J., Moran, W., Application of fuzzy classification system to coronary artery disease and breast cancer, Australasian Phys. Eng. Sci. Med. 21:141–147, 1998.

    Google Scholar 

  41. Lovelace, J.J., Cios, K.J., Sala, D.M., Goodenday, L.S., Internet-based system for diagnosis of coronary artery disease. Comput. Cardiol. 2:45–48, 1998.

    Google Scholar 

  42. Hudson, D.L., Cohen, M.E., Deedwania, P.C., A hybrid system for diagnosis and treatment of heart disease. In: Proc. 16th Annual Internat. Conf. of the IEEE Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical, IEEE, New York, NY, USA, 2 1368–1369, 1994.

  43. Polat, K., Gunes, S., and Tosun, S., Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing, Pattern Recogn. 39:2186–2193, 2006.

    Article  Google Scholar 

  44. Verlinde, H., De Cock, M., and Boute, R., Fuzzy versus quantitative association rules: a fair data driven comparison. IEEE Trans. Syst. Man Cybern. B Cybern. 36:679–684, 2006.

    Article  Google Scholar 

  45. Gonzalez, A., and Perez, R., SLAVE: a genetic learning system based on an iterative approach. IEEE Trans. Fuzz. Syst. 7:176–191, 1999.

    Article  Google Scholar 

  46. Nauck, D., Data Analysis with Neuro Fuzzy Methods (Habilitation thesis. Otto-von-Guericke University of Magdeburg, Faculty of Computer Science, Magdeburg, Germany, 2000).

  47. Ishibuchi, H., Yamamoto, T., Nakashima, T., Hybridization of Fuzzy GBML Approaches for Pattern Classification Problems, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35:359–365, 2005.

    Article  Google Scholar 

  48. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., and Froelicher, V., International application of a new probability algorithm for the diagnosis of coronary artery disease. Am. J. Cardiol. 64:304–310, 1989.

    Article  Google Scholar 

  49. Pudil, P., Novovicova, J., and Kittler, J., Floating Search Methods in Feature Selection. Pattern Recogn. Lett. 15:1119–1125, 1994.

    Article  Google Scholar 

  50. Oh, I.S., Lee, J.S., and Moon, B.R., Hybrid genetic algorithms for feature selection, IEEE Trans. Pattern Anal. Mach. Intell. 26:1424–1437, 2004.

    Article  Google Scholar 

  51. Ferri, F.J., Pudil, P., Hatef, M., and Kittler, J., Comparative Study of Techniques for Large-Scale Feature Selection, Pattern Recognition in Practice IV, In: Gelsema, E.S., and Kanal, L.N., (Eds.), 403–413, 1994.

  52. Kudo, M., and Sklansky, J., Comparison of Algorithms that Select Features for Pattern Recognition. Pattern Recogn. 33:25–41, 2000.

    Article  Google Scholar 

  53. Jain, A., and Zongker, D., Feature Selection: Evaluation, Application, and Small Sample Performance. IEEE Trans. Pattern Anal. Mach. Intell. 19:153–158, 1997.

    Article  Google Scholar 

  54. Ishibuchi, H., Nozaki, K., and Tanaka, H., Distributed Representation of Fuzzy Rules and Its Application to Pattern Classification, Fuzzy Sets Syst. 52:21–32, 1992.

    Article  Google Scholar 

  55. Konak, A., Coit, D.W., and Smith, A.E., Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91:992–1007, 2006.

    Article  Google Scholar 

  56. Coello, C.A.C., A comprehensive survey of evolutionary based multi-objective optimization techniques. Knowl. Inf. Syst. 1:269–308, 1999.

    Google Scholar 

  57. Van Veldhuizen, D.A., and Lamont, G.B., Multi-objective evolutionary algorithms: analyzing the state-of-the-art. Evol.Comput. 8:125–147, 2000.

    Article  Google Scholar 

  58. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:182–197, 2002.

    Article  Google Scholar 

  59. Srinivas, N., and Deb, K., Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol. Comput. 2:221–248, 1994.

    Article  Google Scholar 

  60. Deb, K., and Goel, T., Controlled elitist non-dominated sorting genetic algorithms for better convergence, In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., and Corne, D., (Eds.), J. Med. Syst. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization EMO 2001 (Berlin: Springer, 2001) 67–81.

    Google Scholar 

  61. Dietterich, T.G., An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 40:139–158, 2000.

    Article  Google Scholar 

  62. Haykin, S., Neural Networks: A Comprehensive Foundation (Prentice-Hall, 1999).

  63. Quinlan, J.R., C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers, 1993).

  64. Fisher, R.A., The use of multiple measurements in taxonomic problems. Annals of Eugenics 7:179–188, 1936.

    Article  Google Scholar 

  65. Snchez, L., Couso, I., Corrales, J.A., Combining GP Operators With SA Search To Evolve Fuzzy Rule Based Classifiers. Inf. Sci. 136:175–192, 2001.

    Article  Google Scholar 

  66. Witten, H., and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations (Morgan Kaufmann, 1999).

  67. Alcal-Fdez, J., Snchez, L., Garcia, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernndez, J.C., Herrera, F., KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining Problems. Soft Comput. 13:307–318, 2009.

    Article  Google Scholar 

  68. Demsar, J., Zupan, B., Leban, G., and Curk, T., Orange: from experimental machine learning to interactive data mining, European Conference of Machine Learning (Springer, Pisa, Italy) 537–539, 2004.

  69. Altman, D.G., and Bland, J.M., Diagnostic tests 3: receiver operating characteristic plots. Br. Med. J. 309:188, 1994.

    Google Scholar 

  70. Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection, In: Mellish, C.S., ed. Proceedings IJCAI-95 Montreal, Quebec, (Morgan Kaufmann, Los Altos, CA, 1995) 1137–1143.

  71. West, D., Rampal, P.R., and West, V., Ensemble strategies for a medical diagnostic decision support system: a breast cancer diagnosis application, Eur. J. Oper. Res. 162:532–551, (2005).

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This research was supported by a fundamental research grant scheme No. FP093/2007C from the Ministry of Higher Education, Malaysia.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Lahsasna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahsasna, A., Ainon, R.N., Zainuddin, R. et al. Design of a Fuzzy-based Decision Support System for Coronary Heart Disease Diagnosis. J Med Syst 36, 3293–3306 (2012). https://doi.org/10.1007/s10916-012-9821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-012-9821-7

Keywords

Navigation