Skip to main content

Advertisement

Discovering Medical Knowledge using Association Rule Mining in Young Adults with Acute Myocardial Infarction

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The knowledge discovery has been widely applied to mine significant knowledge from medical data. Nevertheless, previous studies have produced large numbers of imprecise patterns. To reduce the number of imprecise patterns, we need an approach that can discover interesting patterns that connote causality between antecedent and consequence in a pattern. In this paper, we propose association rule mining method that can discover interesting patterns that include medical knowledge in Korean acute myocardial infarction registry that consists of 1,247 young adults collected by 51 participating hospitals since 2005. Proposed method can remove imprecise patterns and discover target patterns that include associations between blood factors and disease history. The association that blood factors affect to disease history is defined as target pattern. In our experiments, the interestingness of a target pattern is evaluated in terms of statistical measures such as lift, leverage, and conviction. We discover medical knowledge that glucose, smoking, triglyceride total cholesterol, and creatinine are associated with diabetes and hypertension in Korean young adults with acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gu, D., Liang, C., and Li, X., Intelligent technique for knowledge reuse of dental medical records based on case-based reasoning. J. Med. Syst. 34:213–222, 2010.

    Article  Google Scholar 

  2. Du, G., Jiang, Z., Diao, X., and Yao, Y., Knowledge extraction algorithm for variances handling of CP using integrated hybrid genetic double multi-group cooperative PSO and DPSO. J. Med. Syst. 36:979–994, 2012.

    Article  Google Scholar 

  3. Arif, M., Malagore, I. A., and Afsar, F. A., Detection and localization of myocardial infarction using K-nearest neighbor classifier. J. Med. Syst. 36:279–289, 2012.

    Article  Google Scholar 

  4. Shon, H. S., Ryu, K. S., Park, S.H., Bae, J.W., Cha, E. J. and Ryu, K. H., Risk factors of major adverse cardiac events after percutaneous coronary intervention in non ST elevation myocardial infarction. Int. Conf. Ubiquit. Healthc. 58–60, 2011.

  5. Li, P., Pok, G., Jung, K. S., Shon, H. S., and Ryu, K. H., QSE: A new 3-D solvent exposure measure for the analysis of protein structure. Proteomics 11(19):3794–3801, 2011.

    Google Scholar 

  6. Bashir, M. E., Lee, D. G., Akasha, M., Yi, G. M., Cha, E. J., Bae, J. W., Cho, M. C., and Ryu, K. H., Highlighting the current issues with pride suggestions for improving the performance of real time cardiac health monitoring. Inf. Technol. Bio- Med. Inform 6266:226–33, 2010.

    Google Scholar 

  7. Bashir, M. E., Ryu, K. S., Park, S. H., Lee, D. G., Shon, H. S., and Ryu, K. H., Superiority real-time cardiac arrhythmias detection using trigger learning method. Inf. Technol. Bio- Med. Informa. 6865:53–65, 2011.

    Google Scholar 

  8. Shon, H. S., Ryu, K. H., Yang, K. S., and Yoo, C. W., Feature selection method using WF-LASSO for gene expression data analysis. ACM Conf. Bioinforma, Comput. Biol. Biomed. 522–24, 2011.

  9. Towbin, J. A., Bricker, J. T., and Garson, A., Electrocardiographic criteria for diagnosis of acute myocardial infarction in childhood. Am. J. Cardiol. 69(19):1545–1548, 1992.

    Article  Google Scholar 

  10. Weinberger, I., Rotenberg, Z., Fuchs, J., Sagy, A., Friedmann, J., and Agmon, J., Myocardial infarction in young adults under 30 years: Risk factors and clinical course. Clin. Cardiol. 10(1):9–15, 1987.

    Article  Google Scholar 

  11. Chouhan, L., Hajar, H. A., and Pomposiello, J. C., Comparison of thrombolytic therapy for acute myocardial infarction in patients aged <35 and >55 years. Am. J. Cardiol. 71(2):157–159, 1993.

    Article  Google Scholar 

  12. Perski, A., Olsson, G., Landou, C., de Faire, U., Theorell, T., and Hamsten, A., Minimum heart rate and coronary atherosclerosis: Independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. Am. J. Cardiol. 123(3):609–616, 1992.

    Google Scholar 

  13. AHA (American Heart Association), Heart and Stroke Facts Statistics. American Heart Association, Dallas, 1993.

    Google Scholar 

  14. Kannel, W. B., and Abbott, R. D., Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham study. N. Engl. J. Med. 311(18):1144–1147, 1984.

    Article  Google Scholar 

  15. Zimmerman, F. H., Cameron, A., Fisher, L. D., and Ng, G., Myocardial infarction in young adults: Angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry). J. Am. Coll. Cardiol. 26(3):654–661, 1995.

    Article  Google Scholar 

  16. Füllhaas, J. U., Rickenbacher, P., Pfisterer, M., and Ritz, R., Long-term prognosis of young patients after myocardial infarction in the thrombolytic era. Clin. Cardiol. 20(12):993–998, 1997.

    Article  Google Scholar 

  17. Imazio, M., Bobbio, M., Bergerone, S., Barlera, S., and Maggioni, A. P., Clinical and epidemiological characteristics of juvenile myocardial infarction in Italy: The GISSI experience. G. Ital. Cardiol. 28(5):505–512, 1998.

    Google Scholar 

  18. Doughty, M., Mehta, R., Bruckman, D., Das, S., Karavite, D., Tsai, T., and Eagle, K., Acute myocardial infarction in the young-The University of Michingan experience. Am. Heart J. 143(1):56–62, 2002.

    Article  Google Scholar 

  19. Agrawal, R., and Srikant, R., Fast algorithms for mining association rules in large databases. Int. Conf. Very Large Data Bases. 487–99, 1994.

  20. Han, J., Pei, J., and Yin, Y., Mining frequent patterns without candidate generation. ACM SIGMOD Int. Conf. Manag. Data 29(2):1–12, 2000.

    Google Scholar 

  21. STULONG study website, Available: http://euromise.vse.cz/challenge/. 2002.

  22. Rauch, J., and Šimůnek, M., Alternative approach to mining association rules. Found. Data Min. Knowl. Disc. 6:211–31, 2005.

    Google Scholar 

  23. Dogan, S., and Turkoglu, I., Diagnosing hyperlipidemia using association rules. Math. Comput. Appl. 13(3):193–202, 2008.

    Google Scholar 

  24. Ordonez, C., Association rule discovery with the train and test approach for heart disease prediction. IEEE Trans. Inf. Technol. Biomed. 10(2):334–343, 2006.

    Article  MathSciNet  Google Scholar 

  25. Gamberger, D., Lavrač, N. and Jovanoski, V., High confidence association rules for medical diagnosis. Intell. Data Anal. Med. Pharmacol. 42–51, 1999.

  26. Szathmary, L., Napoli, A., and Valtchev, P., Towards rare itemset mining. Int. Conf. Tools with Artificial Interlligence. 1:305–312, 2007.

    Article  Google Scholar 

  27. Szathmary, L., Valtchev, P., and Napoli, A., Finding minimal rare itemsets and rare association rules. Knowl. Sci. Eng. Manag. 6291:16–27, 2010.

    Google Scholar 

  28. Patil, S. B., and Kumaraswamy, Y. S., Extraction of significant patterns from heart disease warehouses for heart attack prediction. Int. J. Comput. Sci. Netw. Secur. 9(2):228–235, 2009.

    Google Scholar 

  29. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., and Yiu, T., MAFIA: A Maximal Frequent Itemset Algorithm. IEEE Trans. Knowl. Data Eng. 17(11):1490–1504, 2005.

    Article  Google Scholar 

  30. Karaolis, M., Moutiris, J. A., Papaconstantinou, L. and Pattichis, C. S., Association rule analysis for the assessment of the risk of coronary heart events. IEEE Eng. Med. Biol. Soc. 6238–41, 2009.

  31. Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., and Lakhal, L., Generating a condensed representation for association rules. J. Intell. Inform. Syst. 24(1):29–60, 2005.

    Article  MATH  Google Scholar 

  32. Brisson, L., Pasquier, N., Hebert, C., and Collard, M., HASARD: Mining sequential association rules for atherosclerosis risk factor analysis. Eur. Conf. Princ. Pract. Knowl. Discov. Databases. 14–25, 2004.

  33. Lavrač, N., Železný, F., and Flach, P. A., RSD: Relational subgroup discovery through first-order feature construction, Lecture Notes in Computer Science, vol. 2583. Springer, Berlin Heidelberg New York, pp. 149–165, 2003.

    Google Scholar 

  34. Kléma, J., Holas, T., Železný, F., and Karel, F., Mining the strongest patterns in medical sequential data. Eur. Med. Biol. Eng. Conf. 2005.

  35. Karaolis, M., Moutiris, J. A., Papaconstantinou, L. and Pattichis, C. S., AKAMAS: Mining association rules using a new algorithm for the assessment of the risk of coronary heart events. Inf. Technol. Appl. Biomed. 1–6, 2009.

  36. Delgado, M., Sánchez, D., Martín-Bautista, M. J., and Vila, M., Mining association rules with improved semantics in medical databases. Artif. Intell. Med. 21:241–245, 2001.

    Article  Google Scholar 

  37. Kim, H. K., Jeong, M. H., Ahn, Y., Kim, J. H., Chae, S. C., Kim, Y. J., Hur, S. H., Seong, I. W., Hong, T. J., Choi, D. H., Cho, M. C., Kim, C. J., Seung, K. B., Chung, W. S., Jang, Y. S., Rha, S. W., Bae, J. H., Cho, J. G., and Park, S. J., Other Korea Acute Myocardial Infarction Registry Investigators: Hospital discharge risk score system for the assessment of clinical outcomes in patients with acute myocardial infarction (Korea Acute Myocardial Infarction Registry [KAMIR] score). Am. J. Cardiol. 107(7):965–971, 2011.

    Article  Google Scholar 

  38. Sim, D. S., Jeong, M. H., and Kang, J. C., Current management of acute myocardial infarction: Experience from the Korea Acute Myocardial Infarction Registry. J. Cardiol. 56(1):1–7, 2010.

    Article  Google Scholar 

  39. Ridker, P. M., Hennekens, C. H., Buring, J. E., and Rifai, N., C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342(12):836–843, 2000.

    Article  Google Scholar 

  40. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., and Hennekens, C. H., Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336(14):973–979, 1997.

    Article  Google Scholar 

  41. Anand, A. V., Muneeb, M., Divya, N., Senthil, R., Kapoor, M., Gowri, J., and Begum, T. N., Clinical significance of hypertension, diabetes and inflammation, as predictor of cardiovascular disease. Int. J. Biol. Med. Res. 2(1):369–373, 2011.

    Google Scholar 

  42. Oviagele, B., Markovic, D., and Fonarow, G. C., Recent US patterns and predictors of prevalent diabetes among acute myocardial infarction patients. Cardiol. Res. Pract. 2011(145615):1–8, 2011.

    Article  Google Scholar 

  43. Lee, M. G., Jeong, M. H., Ahn, Y., Chae, S. C., Hur, S. H., Hong, T. J., Kim, Y. J., Seong, I. W., Chae, J. K., Rhew, J. Y., Chae, I. H., Cho, M. C., Bae, J. H., Rha, S. W., Kim, C. J., Choi, D., Jang, Y. S., Yoon, J., Chung, W. S., Cho, J. G., Seung, K. B., and Park, S. J., Comparison of clinical outcomes following acute myocardial infarctions in hypertensive patients with or without Diabetes. Korean Circ. J. 39(6):243–250, 2009.

    Article  Google Scholar 

  44. Kang, D. G., Jeong, M. H., Ahn, Y., Chae, S. C., Hur, S. H., Hong, T. J., Kim, Y. J., Seong, I. W., Chae, J. K., Rhew, J. Y., Chae, I. H., Cho, M. C., Bae, J. H., Rha, S. W., Kim, C. J., Jang, Y. S., Yoon, J., Seung, K. B., and Park, S. J., Clinical effect of hypertension on the mortality of patients with acute myocardial infarction. J. Korean Sci. 24(5):800–806, 2009.

    Article  Google Scholar 

  45. Quinlan, J. R., C4.5: Programs for Machine Learning. Morgan Kaufmann. 1993.

  46. Piatetsky-Shapiro, G., Discovery, analysis, and presentation of strong rules. Knowl. Disc. Databases 229:229–248, 1991.

    Google Scholar 

  47. Brin, S., Motwani, R., Ullman, J. D., and Tsur, S., Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Int. Conf. Manag. Data 26(2):255–264, 1997.

    Article  Google Scholar 

  48. Tungsubutra, W., Tresukosol, D., Buddhari, W., Boonsom, W., Sanguanwang, S., and Srichaiveth, B., Acute Coronary Syndrome in Young Adults: The Thai ACS Registry. J. Med. Assoc. Thai. 1:81–90, 2007.

    Google Scholar 

  49. Kanitz, M. G., Giovannucci, S. J., Jones, J. S., and Mott, M., Myocardial Infarction in Young Adults: Risk Factors and Clinical Features. J. Emerg. Med. 14(2):139–145, 1996.

    Article  Google Scholar 

  50. Hong, M. K., Cho, S. Y., Hong, B. K., Chang, K. J., Chung, M. I., Lee, H. M., Lim, W. S., Kwon, H. M., Jang, Y. S., and Chung, N. S., Acute myocardial infarction in the young adults. Yonsei Med. J. 35(2):184–189, 1994.

    Google Scholar 

  51. Caimi, G., Valenti, A., and Lo Presti, R., Acute myocardial infarction in young adults: Evaluation of the haemorheological pattern at the initial stage, after 3 and 12 months. Ann. Ist Super Sanita. 43(2):139–143, 2007.

    Google Scholar 

  52. Lin, Y., Hsu, L., Ko, Y., Kuo, C., Chen, W., Lin, C., Pan, W., and Chang, C., Impact of conventional cardiovascular risk factors on acute myocardial infarction in young adult Taiwanese. Acta Cardiol Sin. 26:228–234, 2010.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)(No. 2012-0000478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Ho Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.G., Ryu, K.S., Bashir, M. et al. Discovering Medical Knowledge using Association Rule Mining in Young Adults with Acute Myocardial Infarction. J Med Syst 37, 9896 (2013). https://doi.org/10.1007/s10916-012-9896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-012-9896-1

Keywords