Abstract
Real-time remote health monitoring systems are experiencing tremendous advancement resulting from improvements in low power, reliable sensors; yet they are still constrained to low-level interpretation. Automatic data analysis continues to be a tedious task due to a lack of efficient, reliable platforms for data analysis. In this paper, we present a system for monitoring patients remotely by emphasizing the strength of Complex Event Processing (CEP) and Situation Awareness. In this approach, the system makes decisions in a declarative way, which helps medical experts to understand the situation in a more realistic manner. The primary objective of this paper is to explicate the different components inside the system. To verify the technical feasibility of each component, the proposed system is implemented and tested using ECG data.











Similar content being viewed by others
References
Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Ferguson, T. B., Flegal, K., Ford, E., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M., Meigs, J., Mozaffarian, D., Nichol, G., O’Donnell, C., Roger, V., Rosamond, W., Sacco, R., Sorlie, P., Stafford, R., Steinberger, J., Thom, T., Wasserthiel-Smoller, S., Wong, N., Wylie-Rosett, J., and Hong, Y., ‘Heart disease and stroke statistics-2009 Update. A report from the American Heart Association Statistics Committee and Stroke statistics Subcommittee’. J. American Heart Association 119(3):e21–e181, 2009.
Barbeau, S. J., Perez, R. A., Labrador, M. A., Perez, A. J., Winters, P. L., Georggi, N. I., ‘A location-aware framework for Intelligent real-time mobile applications’. IEEE CS 58–67, 2011
Exarchos, P. T., Papaloukas, C., Fotiadis, D. I., and Michalis, L., ‘An association rule mining-based methodology for automated detection of ischemic ECG beats’. IEEE Trans on BioMed Engg 53(8):1531–1540, 2006.
Lin, C.-T., Chang, K.-C., Lin, C.-L., Chiang, C.-C., Lu, S.-W., Chang, S.-S., Lin, B.-S., Liang, H.-Y., Chen, R.-J., Lee, Y.-T., and Ko, L.-W., An Intelligent Telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Tran on InfoTech in BioMed 14(3):726–733, 2010.
Buttussi, F., and Chittaro, L., MOPET: A context-aware and user-adaptive wearable system for fitness training. Artif Intell Med 42(2):153–163, 2008.
Woodward, B., Istepanian, H., ‘The use of underwater acoustic biotelemetry for monitoring the ECG of a swimming patient’. IEEE EMBS 121-122, 1995
Khatib, A., Poletti, F., Bertozzi, D., Benini, L., Bechara, M., Khalifeh, H., Jantsch, A., Nabiev, R., ‘A multiprocessor system-on-chip for real time biomedical and analysis: Architectural design space exploration’. IEEE Design Automation Conf 125–130, 2006.
Di, W., Rundensteiner, E. A., Wang, H., and Ellison, R. T., ‘Active complex event processing: Application in real-time health care’. VLDB Endowment 3(2):1545–1548, 2010.
Wang, H., Peng, D., Wang, W., Sharif, H., Chen, H.-H., and Khoynezhad, A., ‘Resource-aware secure ECG healthcare monitoring through body sensor networks’. IEEE Wireless Communication 17(1):12–19, 2010.
Wood, A. D., Stankovic, J. A., Virone, G., Selavo, L., He, Z., Cao, Q., Doan, T., Wu, Y., Fang, L., and Stoleru, R., ‘Context-aware wireless sensor networks for assisted living and residential monitoring’. IEEE Netw. 22(4):26–33, 2008.
Varady, P., Benyo, Z., and Benyo, B., An open architecture patient monitoring system using standard technologies. IEEE Tran Info Tech & BioMed 6(1):95–98, 2002.
Lin, C.-H., Shuenn-Tsong, A., and Kuo, T.-S., ‘A remote data access architecture for home-monitoring health care applications’. Elsevier Journal of Medical Engineering & Physics 29:199–204, 2007.
Taleb, T., Bottazzi, D., and Nasser, N., A novel middleware solution to improve ubiquitous healthcare systems aided by affective information. IEEE Tran InfoTech in BioMed 14(2):335–349, 2010.
Kang, K., Park, K.-J., Song, J.-J., Yoo, C.-H., and Sha, L., ‘A medical-grade wireless architecture for remote electrocardiography’. IEEE Tran InfoTech in BioMed 15(2):260–267, 2011.
Varshney, U., A framework for supporting emergency message in wireless patient monitoring. Elsevier, Decision Support Systems 45:981–996, 2008.
Celler, B. G., Earnshaw, W., Ilsar, E. D., Betbeder-Matibet, L., Harris, M. F., Clark, R., Hesketh, T., and Lovell, N. H., ‘Remote monitoring of health status if the elderly at home. A multidisciplinary project on aging at the University of New South Wales’. International Journal of Bio-medical Computing 40:147–155, 1995.
Nee, O., Hein, A., Gorath, T., Hulsmann, N., Laleci, G. B., Yuksel, M., Olduz, M., Tasyurt, I., Orhan, U., Dogac, A., Fruntelata, A., Ghiorghe, S., and Ludwig, R., ‘SAPHIRE: Intelligent healthcare monitoring based on semantic interoperability platform: Pilot applications’. IET Communication 2(2):192–201, 2008.
Barnes, G. E., and Warren, S., ‘A wearable Bluetooth enabled system for home health care’. IEEE EMBS/BMES 3:1879–1880, 2002.
Figueredo, M. V. M., Dias, J. S., ‘Mobile telemedicine system for home care and patient monitoring’. IEEE EMBS, 3387–3390, 2004.
Korhonen, I., and Parkka, J., Health monitoring in the home of the future. IEEE Eng in Med & Bio Magazine 22(3):66–73, 2003.
Blount, M., Batra, V. M., Capella, A. N., Ebling, M. R., Jerome, W. F., Martin, S. M., Nidd, M., Niemi, M. R., and Wright, S. P., ‘Remote health care monitoring using personal care connect’. IBM System Journal 46(1):95–113, 2007.
Bottazzi, D., Corradi, A., and Montanari, R., Context-aware middleware solutions for anytime and anywhere emergency assistance to elderly people. IEEE Communication Magazine 44(4):82–90, 2006.
Fioratou, E., Flin, R., Glavin, R., and Patey, R., Beyond monitoring: Distributed situation awareness in anaesthesia. Br. J. Anaesth. 105(1):83–90, 2010.
Endsley, M. R., ‘Theoretical underpinning of situation awareness: A critical review’. In: Endsley, M. R., and Garland, D. J., (Eds.), Situation Awareness Analysis and Measurement, Lawrence Erlbaum, Mahwah, NJ, pp. 3–32, 2000.
Endsely, M. R., ‘Towards a theory of situation awareness in dynamic systems’. Human Factors 37(1):32–64, 1995.
Endsley, M. R., Bolte, B., and Jones, D. G., Designing for situation awareness: An approach to user centered design. Taylor & Francis, New York, 2003.
Velandia, C. D., Don, S., Cho, N-Y., Choi, E., Min, D., ‘Adaptive signal management using event processing networks’. IEEE NCM 738–745, 2010.
Chazal, P. D., O’Dwyer, M., and Reilly, R. B., ‘Automatic classification of heartbeats using ECG morphology and heartbeat interval features’. IEEE Trans on BioMed Engg 51(7):1195–1206, 2004.
Wang, X. H., Zhang, D. Q., Gu, T., Pung, H. K., ‘Ontology based context modeling and reasoning using OWL’. IEEE PERCOMW’04, 18–22, 2004
Moody, G. B., and Mark, R. G., The impact of the MIT-BIT arrhythmia database. IEEE Eng. Med. Biol Mag 20(3):45–50, 2001.
Lee, S., Kim, J., and Lee, M., A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans on BioMed Engg 58(9):2448–2455, 2011.
Acknowledgement
This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program (NIPA-2012-(H0301-12-4014)) supervised by the NIPA(National IT Industry Promotion Agency)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
S., D., Chung, D., Choi, E. et al. An Awareness Approach to Analyze ECG Streaming Data. J Med Syst 37, 9901 (2013). https://doi.org/10.1007/s10916-012-9901-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-012-9901-8