Skip to main content
Log in

An Awareness Approach to Analyze ECG Streaming Data

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Real-time remote health monitoring systems are experiencing tremendous advancement resulting from improvements in low power, reliable sensors; yet they are still constrained to low-level interpretation. Automatic data analysis continues to be a tedious task due to a lack of efficient, reliable platforms for data analysis. In this paper, we present a system for monitoring patients remotely by emphasizing the strength of Complex Event Processing (CEP) and Situation Awareness. In this approach, the system makes decisions in a declarative way, which helps medical experts to understand the situation in a more realistic manner. The primary objective of this paper is to explicate the different components inside the system. To verify the technical feasibility of each component, the proposed system is implemented and tested using ECG data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Ferguson, T. B., Flegal, K., Ford, E., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M., Meigs, J., Mozaffarian, D., Nichol, G., O’Donnell, C., Roger, V., Rosamond, W., Sacco, R., Sorlie, P., Stafford, R., Steinberger, J., Thom, T., Wasserthiel-Smoller, S., Wong, N., Wylie-Rosett, J., and Hong, Y., ‘Heart disease and stroke statistics-2009 Update. A report from the American Heart Association Statistics Committee and Stroke statistics Subcommittee’. J. American Heart Association 119(3):e21–e181, 2009.

    Google Scholar 

  2. Barbeau, S. J., Perez, R. A., Labrador, M. A., Perez, A. J., Winters, P. L., Georggi, N. I., ‘A location-aware framework for Intelligent real-time mobile applications’. IEEE CS 58–67, 2011

  3. Exarchos, P. T., Papaloukas, C., Fotiadis, D. I., and Michalis, L., ‘An association rule mining-based methodology for automated detection of ischemic ECG beats’. IEEE Trans on BioMed Engg 53(8):1531–1540, 2006.

    Article  Google Scholar 

  4. Lin, C.-T., Chang, K.-C., Lin, C.-L., Chiang, C.-C., Lu, S.-W., Chang, S.-S., Lin, B.-S., Liang, H.-Y., Chen, R.-J., Lee, Y.-T., and Ko, L.-W., An Intelligent Telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Tran on InfoTech in BioMed 14(3):726–733, 2010.

    Article  Google Scholar 

  5. Buttussi, F., and Chittaro, L., MOPET: A context-aware and user-adaptive wearable system for fitness training. Artif Intell Med 42(2):153–163, 2008.

    Article  Google Scholar 

  6. Woodward, B., Istepanian, H., ‘The use of underwater acoustic biotelemetry for monitoring the ECG of a swimming patient’. IEEE EMBS 121-122, 1995

  7. Khatib, A., Poletti, F., Bertozzi, D., Benini, L., Bechara, M., Khalifeh, H., Jantsch, A., Nabiev, R., ‘A multiprocessor system-on-chip for real time biomedical and analysis: Architectural design space exploration’. IEEE Design Automation Conf 125–130, 2006.

  8. Di, W., Rundensteiner, E. A., Wang, H., and Ellison, R. T., ‘Active complex event processing: Application in real-time health care’. VLDB Endowment 3(2):1545–1548, 2010.

    Google Scholar 

  9. Wang, H., Peng, D., Wang, W., Sharif, H., Chen, H.-H., and Khoynezhad, A., ‘Resource-aware secure ECG healthcare monitoring through body sensor networks’. IEEE Wireless Communication 17(1):12–19, 2010.

    Article  Google Scholar 

  10. Wood, A. D., Stankovic, J. A., Virone, G., Selavo, L., He, Z., Cao, Q., Doan, T., Wu, Y., Fang, L., and Stoleru, R., ‘Context-aware wireless sensor networks for assisted living and residential monitoring’. IEEE Netw. 22(4):26–33, 2008.

    Article  Google Scholar 

  11. Varady, P., Benyo, Z., and Benyo, B., An open architecture patient monitoring system using standard technologies. IEEE Tran Info Tech & BioMed 6(1):95–98, 2002.

    Article  Google Scholar 

  12. Lin, C.-H., Shuenn-Tsong, A., and Kuo, T.-S., ‘A remote data access architecture for home-monitoring health care applications’. Elsevier Journal of Medical Engineering & Physics 29:199–204, 2007.

    Article  Google Scholar 

  13. Taleb, T., Bottazzi, D., and Nasser, N., A novel middleware solution to improve ubiquitous healthcare systems aided by affective information. IEEE Tran InfoTech in BioMed 14(2):335–349, 2010.

    Article  Google Scholar 

  14. Kang, K., Park, K.-J., Song, J.-J., Yoo, C.-H., and Sha, L., ‘A medical-grade wireless architecture for remote electrocardiography’. IEEE Tran InfoTech in BioMed 15(2):260–267, 2011.

    Article  Google Scholar 

  15. Varshney, U., A framework for supporting emergency message in wireless patient monitoring. Elsevier, Decision Support Systems 45:981–996, 2008.

    Article  Google Scholar 

  16. Celler, B. G., Earnshaw, W., Ilsar, E. D., Betbeder-Matibet, L., Harris, M. F., Clark, R., Hesketh, T., and Lovell, N. H., ‘Remote monitoring of health status if the elderly at home. A multidisciplinary project on aging at the University of New South Wales’. International Journal of Bio-medical Computing 40:147–155, 1995.

    Article  Google Scholar 

  17. Nee, O., Hein, A., Gorath, T., Hulsmann, N., Laleci, G. B., Yuksel, M., Olduz, M., Tasyurt, I., Orhan, U., Dogac, A., Fruntelata, A., Ghiorghe, S., and Ludwig, R., ‘SAPHIRE: Intelligent healthcare monitoring based on semantic interoperability platform: Pilot applications’. IET Communication 2(2):192–201, 2008.

    Article  Google Scholar 

  18. Barnes, G. E., and Warren, S., ‘A wearable Bluetooth enabled system for home health care’. IEEE EMBS/BMES 3:1879–1880, 2002.

    Google Scholar 

  19. Figueredo, M. V. M., Dias, J. S., ‘Mobile telemedicine system for home care and patient monitoring’. IEEE EMBS, 3387–3390, 2004.

  20. Korhonen, I., and Parkka, J., Health monitoring in the home of the future. IEEE Eng in Med & Bio Magazine 22(3):66–73, 2003.

    Article  Google Scholar 

  21. Blount, M., Batra, V. M., Capella, A. N., Ebling, M. R., Jerome, W. F., Martin, S. M., Nidd, M., Niemi, M. R., and Wright, S. P., ‘Remote health care monitoring using personal care connect’. IBM System Journal 46(1):95–113, 2007.

    Article  Google Scholar 

  22. Bottazzi, D., Corradi, A., and Montanari, R., Context-aware middleware solutions for anytime and anywhere emergency assistance to elderly people. IEEE Communication Magazine 44(4):82–90, 2006.

    Article  Google Scholar 

  23. Fioratou, E., Flin, R., Glavin, R., and Patey, R., Beyond monitoring: Distributed situation awareness in anaesthesia. Br. J. Anaesth. 105(1):83–90, 2010.

    Article  Google Scholar 

  24. Endsley, M. R., ‘Theoretical underpinning of situation awareness: A critical review’. In: Endsley, M. R., and Garland, D. J., (Eds.), Situation Awareness Analysis and Measurement, Lawrence Erlbaum, Mahwah, NJ, pp. 3–32, 2000.

  25. Endsely, M. R., ‘Towards a theory of situation awareness in dynamic systems’. Human Factors 37(1):32–64, 1995.

    Article  Google Scholar 

  26. Endsley, M. R., Bolte, B., and Jones, D. G., Designing for situation awareness: An approach to user centered design. Taylor & Francis, New York, 2003.

    Google Scholar 

  27. Velandia, C. D., Don, S., Cho, N-Y., Choi, E., Min, D., ‘Adaptive signal management using event processing networks’. IEEE NCM 738–745, 2010.

  28. Chazal, P. D., O’Dwyer, M., and Reilly, R. B., ‘Automatic classification of heartbeats using ECG morphology and heartbeat interval features’. IEEE Trans on BioMed Engg 51(7):1195–1206, 2004.

    Google Scholar 

  29. Wang, X. H., Zhang, D. Q., Gu, T., Pung, H. K., ‘Ontology based context modeling and reasoning using OWL’. IEEE PERCOMW’04, 18–22, 2004

  30. Moody, G. B., and Mark, R. G., The impact of the MIT-BIT arrhythmia database. IEEE Eng. Med. Biol Mag 20(3):45–50, 2001.

    Article  Google Scholar 

  31. Lee, S., Kim, J., and Lee, M., A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans on BioMed Engg 58(9):2448–2455, 2011.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program (NIPA-2012-(H0301-12-4014)) supervised by the NIPA(National IT Industry Promotion Agency)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dugki Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

S., D., Chung, D., Choi, E. et al. An Awareness Approach to Analyze ECG Streaming Data. J Med Syst 37, 9901 (2013). https://doi.org/10.1007/s10916-012-9901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-012-9901-8

Keywords