Skip to main content
Log in

VIKOR Method with Enhanced Accuracy for Multiple Criteria Decision Making in Healthcare Management

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Višekriterijumsko kompromisno rangiranje (VIKOR) method is one of the commonly used multi criteria decision making (MCDM) methods for improving the quality of decision making. VIKOR has an advantage in providing a ranking procedure for positive attributes and negative attributes when it is used and examined in decision support. However, we noticed that this method may failed to support an objective result inmedical field because most medical data have normal reference ranges (e.g., for normally distributed data: \(NRR \in [\mu \pm 1.96\sigma ]\)), this limitation shows a negative effect on the acceptance of it as an effective decision supporting method in medical decision making. This paper proposes an improved VIKOR method with enhanced accuracy (ea-VIKOR) to make it suitable for such data in medical field by introducing a new data normalization method taking the original distance to the normal reference range (ODNRR) into account. In addition, an experimental example was presented to demonstrate efficiency and feasibility of the ea-VIKOR method, the results demonstrate the abilityof ea-VIKOR to deal with moderate data and support the decision making in healthcare care management. Forthis reason, the ea-VIKOR should be considered for use as a decision support tool for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kazdin, A.E., Evidence-based treatment and practice: new opportunities to bridge clinical research and practice, enhance the knowledge base, and improve patient care. Am. Psychol. 63(3):146–159, 2008.

    Article  Google Scholar 

  2. Choudhry, N.K., Fletcher, R.H., and Soumerai, S.B., Systematic review: the relationship between clinical experience and quality of health care. Ann. Intern. Med. 142(4):260–273, 2005.

    Google Scholar 

  3. Dreiseitl, S., and Binder, M., Do physicians value decision support? A look at the effect of decision support systems on physician opinion. Artif. Intell. Med. 33(1):25–30, 2005.

    Article  Google Scholar 

  4. Wagholikar, K.B., Sundararajan, V., and Deshpande, A.W., Modeling paradigms for medical diagnostic decision support: a survey and future directions. J. Med. Syst. 36(5):3029–3049, 2012.

    Article  Google Scholar 

  5. Pascot, D., Bouslama, F., and Mellouli, S., Architecturing large integrated complex information systems: an application to health care. Knowl. Inf. Syst. 27(1):115–140, 2011.

    Article  Google Scholar 

  6. Gagnon, M.P., Desmartis, M., Labrecque, M., Car, J., Pagliari, C., Pluye, P., Frémont, P., Gagnon, J., Tremblay, N., and Légaré, F., Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. J. Med. Syst. 36(1):241–277, 2012.

    Article  Google Scholar 

  7. Ioannidis, J.P.A., and Garber, A.M., Individualized cost-effectiveness analysis. Plos. Med. 8(7):e1001058, 2011.

    Article  Google Scholar 

  8. Montori, V.M., and Guyatt, G.H., Progress in evidence-based medicine. JAMA 300(15):1814–1816, 2008.

    Article  Google Scholar 

  9. Dolan, J.G., Multi-criteria clinical decision support: a primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered health care. Patient 3(4):229–248, 2010.

    Article  Google Scholar 

  10. Saaty, T.L., A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3):234–281, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, C.W., and Kwak, N.K., Strategic enterprise resource planning in a health-care system using a multicriteria decision-making model. J. Med. Syst. 35(2):265–275, 2011.

    Article  MathSciNet  Google Scholar 

  12. Ajami, S., and Ketabi, S., Performance evaluation of medical records departments by analytical hierarchy process (AHP) approach in the selected hospitals in Isfahan. J. Med. Syst. 36(5):1163–1171, 2012.

    Google Scholar 

  13. Charnes, A., Cooper, W.W., and Rhodes, E., Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6):429–444, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  14. Osman, I.H., Berbary, L.N., Sidani, Y., Al-Ayoubi, B., and Emrouznejad, A., Data envelopment analysis model for the appraisal and relative performance evaluation of nurses at an intensive care unit. J. Med. Syst. 35(5):1039–1062, 2011.

    Article  Google Scholar 

  15. Deng, J.L., Control problems of grey systems. Syst. Control. Lett. 1(5):288–294, 1982.

    Article  MATH  Google Scholar 

  16. İçer, S., Coşkun, A., and İkizceli, T., Quantitative grading using grey relational analysis on ultrasonographic images of a fatty liver. J. Med. Syst. 36(4):2521–2528, 2012.

    Article  Google Scholar 

  17. Lai, Y.J., Liu, T.Y., and Hwang, C.L., TOPSIS for MODM. Eur. J. Oper. Res. 76(3):486–500, 1994.

    Article  MATH  Google Scholar 

  18. Rahimi, S., Gandy, L., and Mogharreban, N., A web-based high-performance multicriteria decision support system for medical diagnosis. Int. J. Intell. Syst. 22(10):1083–1099, 2007.

    Article  MATH  Google Scholar 

  19. Opricovic, S., Multicriteria optimization of civil engineering systems. Belgrade: Faculty of Civil Engineering, 1998.

    Google Scholar 

  20. Opricovic, S., and Tzeng, G.H., Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2):445–455, 2004.

    Article  MATH  Google Scholar 

  21. Baltussen, R., and Niessen, L., Priority setting of health interventions: the need for multi-criteria decision analysis. Cost. Eff. Resour. Alloc. 4(1):14, 2006.

    Article  Google Scholar 

  22. Liberatore, M.J., and Nydick, R.L., The analytic hierarchy process in medical and health care decision making: a literature review. Eur. J. Oper. Res. 189(1):194–207, 2008.

    Article  MATH  Google Scholar 

  23. Kaya, T., and Kahraman, C., Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul. Energy 35(6):2517–2527, 2010.

    Article  MathSciNet  Google Scholar 

  24. San Cristóbal, J.R., Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method. Renew. Energ. 36(2):498–502, 2011.

    Article  Google Scholar 

  25. Shaniana, A., and Savadogo, O., A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert. Syst. Appl. 36(2):1362–1370, 2009.

    Article  Google Scholar 

  26. Tzeng, G.H., Lin, C.W., and Opricovic, S., Multi-criteria analysis of alternative-fuel buses for public transportation. Energ. Policy 33(11):1373–1383, 2005.

    Article  Google Scholar 

  27. Chang, C.L., and Hsu, C.H., Multi-criteria analysis via the VIKOR method for prioritizing land-use restraint strategies in the Tseng-Wen reservoir watershed. J. Environ. Manage. 90(11):3226–3230, 2009.

    Article  Google Scholar 

  28. Yu, P.L., A class of solutions for group decision problems. Manage. Sci. 90(11):936–946, 1973.

    Article  Google Scholar 

  29. Lee, D.T., Two-dimensional Voronoi diagrams in the L p-metric. JACM 27(4):604–608, 1980.

    Article  MATH  Google Scholar 

  30. Bahraminasab, M., and Jahan, A., Material selection for femoral component of total knee replacement using comprehensive VIKOR. Mater. Design 32(8–9):4471–4477, 2011.

    Article  Google Scholar 

  31. Liu, H., Liu, L., Liu, N., and Mao, L., Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert. Syst. Appl. 39(17):12926–12934, 2012.

    Article  Google Scholar 

  32. Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., and Bahraminasabb, M., A comprehensive VIKOR method for material selection. Mater. Design 32(3):1215–1221, 2011.

    Article  Google Scholar 

  33. Cevikcan, E., Cebi, S., and Kaya, I., Fuzzy VIKOR and fuzzy axiomatic design versus to fuzzy TOPSIS: an application of candidate assessment. J. Multiple Valued Logic Soft. Comput. 15(2–3):181–208, 2009.

    Google Scholar 

  34. Altman, D.J., and Bland, J.M., Statistics notes: the normal distribution. BMJ 310(6975):298, 1995.

    Article  Google Scholar 

  35. Bowers, D., Medical statistics from scratch: an introduction for health professionals. 2nd edn. New York: Wiley, 2011.

    Google Scholar 

  36. Tango, T., Estimation of normal ranges of clinical laboratory data. Stat. Med. 5(4):335–346, 1986.

    Article  Google Scholar 

  37. Guo, Y.J., and Yi, P.T., Character analysis of linear dimensionless methods. Stat. Res. 25(2):93–100, 2008.

    MathSciNet  Google Scholar 

  38. Ginevičius, R., Normalization of quantities of various dimensions. J. Bus. Econ. Manag. 9(1):79–86, 2008.

    Article  Google Scholar 

  39. Potharst, R., and Feelders, A.J., Classification trees for problems with monotonicity constraints. ACM. Sigkdd. Explor. Newsletter 4(1):1–10, 2002.

    Article  Google Scholar 

  40. Zimmermann, M.B., Jooste, P.L. and Pandav, C.S., Iodine-deficiency disorders. Lancet 372(9645):1251–1262, 2008.

    Article  Google Scholar 

  41. Wang, Y.L., Zhang, Z.L., Ge, P.F., Wang, Y.B., and Wang, S.G., Iodine deficiency disorders after a decade of universal salt iodization in a severe iodine deficiency region in China. Indian. J. Med. Res. 120(4):413–417, 2009.

    Google Scholar 

  42. Lewis, K., Iodine deficiency disorders still prevalent in China. Can. Med. Assoc. J. 181(8):E151–E152, 2009.

    Article  Google Scholar 

  43. World Health Organization, Assessment of iodine deficiency disorders and monitoring their elimination. 3rd edn. WHO Press, 2007.

  44. 2010 annual report of IDD monitoring of China. Retrieved January 28, 2012, from http://www.cdc.zj.cn/bornwcms/Html/jkdt7/2011-06/15/8aac82f5304585ca01309086dfb205c5.html.

  45. Gelman, A., and Hill, J., Data analysis using regression and multilevel/hierarchical models. 1st edn. Cambridge University Press, 2007.

  46. Lv, S.M., Xie, L.J., Zhou, R.H., Chong, Z.S., Jia, L.H., Jing, M.A., Zhao, J., and Xu, D., Control of iodine deficiency disorders following 10-year universal salt iodization in Hebei province of China. Biomed. Environ. Sci. 22(6):472–479, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank the anonymous reviewers of this paper for their helpful comments and valuable suggestions.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Bin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, QL., Li, DD. & Yang, YB. VIKOR Method with Enhanced Accuracy for Multiple Criteria Decision Making in Healthcare Management. J Med Syst 37, 9908 (2013). https://doi.org/10.1007/s10916-012-9908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-012-9908-1

Keywords