Skip to main content
Log in

A Secure RFID-based WBAN for Healthcare Applications

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A Wireless Body Area Network (WBAN) allows the seamless integration of small and intelligent invasive or non-invasive sensor nodes in, on or around a human body for continuous health monitoring. These nodes are expected to use different power-efficient protocols in order to extend the WBAN lifetime. This paper highlights the power consumption and security issues of WBAN for healthcare applications. Numerous power saving mechanisms are discussed and a secure RFID-based protocol for WBAN is proposed. The performance of the proposed protocol is analyzed and compared with that of IEEE 802.15.6-based CSMA/CA and preamble-based TDMA protocols using extensive simulations. It is shown that the proposed protocol is power-efficient and protects patients’ data from adversaries. It is less vulnerable to different attacks compared to that of IEEE 802.15.6-based CSMA/CA and preamble-based TDMA protocols. For a low traffic load and a single alkaline battery of capacity 2.6 Ah, the proposed protocol could extend the WBAN lifetime, when deployed on patients in hospitals or at homes, to approximately five years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ullah, S., Higgins, H., et al., A comprehensive survey of wireless body area networks - On PHY, MAC, and network layers solutions. J. Med. Syst. 36(3):1065–1094, 2012.

    Article  Google Scholar 

  2. IEEE 802.15.6, Wireless Medium Access Control (MAC)and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs) used in or around a body, 2012.

  3. PB-TDMA website, http://www.isi.edu/nsnam/ns/doc/node176.html date visited: 21 Feb. 2013

  4. IEEE Std.802.15.4, Wireless medium access control (MAC) and physical layer (PHY) specifications for low data rate wireless personal area networks (WPAN). IEEE: Piscataway, NJ, USA 2006

  5. Timmons, N. F., and Scanlon, W. G., Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. In: The Proceedings of IEEE SECON. pp. 47. Santa Clara, CA, USA, 2004.

  6. Li, C., Li, H. B., Kohno, R., Performance evaluation of IEEE 802.15.4 for wireless body area network. In: Proceedings of IEEE International Conference on ICC Workshops, pp. 15. Dresden, Germany, 2009.

  7. Zhen, B., Li, H. B., R. Kohno., IEEE body area networks and medical implant communications. In: The Proceeding of the ICST 3rd International Conference on Body Area Networks. Tempe, Ariz, USA, 2008.

  8. Kynsijarvi, L., Goratti, L., Tesi, R., Iinatti, J., Hamalainen, M., Design and performance of contention based MAC protocols in WBAN for medical ICT using IR-UWB, 21 international conference on personal. In: Indoor and Mobile Radio Communications Workshops (PIMRC Workshops), pp. 107111, 26-30 Sept. 2010.

  9. Cheng, S., Huang, C. Y., Tu, C. C., RACOON: A multiuser QoS design for mobile wireless body area networks. J. Med. Syst. 35:1277–1287, 2011.

    Article  Google Scholar 

  10. Otal, B., Alonso, L., Verikoukis, C., Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems. IEEE J. Sel. Areas Commun. 27(4):553–565, 2009.

    Article  Google Scholar 

  11. Ullah, S., Chen, M., Kwak, K. S., Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol. J. Med. Syst 36(6):3875–3891, 2012.

    Article  Google Scholar 

  12. Rashwand, S., Misic, J. V., Khazaei, H., IEEE 802.15.6 under saturation: Some problems to be expected. J. Commun. Netw. 13(2):142–148, 2011.

    Article  Google Scholar 

  13. Rashwand, S., and Jelena, V., Misic: Performance evaluation of IEEE 802.15.6 under non-saturation condition. IEEE GLOBECOM 2011:1–6, 2011.

    Google Scholar 

  14. Huq, M. A., Dutkiewicz, E., Fang, G., Liu, R. P., Vesilo, R., MEB MAC: Improved channel access scheme for medical emergency traffic in WBAN. In: International Symposium on Communications and Information Technologies 2012 (ISCIT 2012), pp. 371-376, 2012.

  15. Marinkovi, E. M. P., Spagnol, C., Faul, S., Marnane, W. P., Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Trans. Inf. Technol. Biomed. 13(6):915–925, 2009.

    Google Scholar 

  16. Moshaddique, A. A., Ullah, N., Chowdhury, M. S., Islam, S. M. R., Kyungsup, K., A power efficient MAC protocol for wireless body area networks. EURASIP J. Wirel. Commun. Netw., 2012.

  17. Hussain, M. A., Alam, M. N., Kwak, K. S., Directional MAC approach for wireless body area networks. Sensors 11(1):771–784, 2012.

    Google Scholar 

  18. Ullah, S., and Kwak, K. S., An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network. J. Med. Syst. 36(3):1021–1030, 2012.

    Article  Google Scholar 

  19. Kwak, K. S., and Ullah, S., A traffic-adaptive MAC protocol for WBAN. In: IEEE Globecom, pp. 1286–1289, 2010.

  20. Su, H., and Zhang, X., Battery-dynamics driven TDMA MAC protocols for wireless body-area monitoring networks in healthcare applications. IEEE. J. Sel. Areas Commun. 27(4):424–434, 2009.

    Article  Google Scholar 

  21. Marinkovic, S. J., and Popovici, E. M., Power Efficient Networking Using a Novel Wake-up Radio. IEEE PervasiveHealth, 2011.

  22. Zhang, Y., and Dolmans, G., Priority-guaranteed MAC protocol for emerging wireless body area networks. Ann. Telecommun. 66(3-4):229–241, 2011.

    Article  Google Scholar 

  23. Li, C., and Kohno, H. B., Reservation-based dynamic TDMA protocol for medical body area networks. IEICE. Trans. Commun. 92(2):387–395, 2009.

    Article  Google Scholar 

  24. Li, H. M., and Tan, J. D., Heartbeat driven MAC for body sensor networks. In: The Proceedings of the International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments, pp. 2530. San Juan, Puerto Rico, 2008.

  25. Rahim, A., Javaid, N., Aslam, M., Qasim, U., Khan, Z. A., Adaptive-reliable medium access control protocol for wireless body area networks. In: 9th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2012), 2012.

  26. Latre, B., Braem, B., Moerman, I., Blondia, C., Demeester, P., survey on wireless body area networks. Wirel. Netw. 17:(1), 2011.

    Article  Google Scholar 

  27. Cheng, S., and Huang, C., RACOON: A multiuser QoS design for mobile wireless body area networks. J. Med. Syst., 1277–1287, 2011.

  28. Marinkovic, S. J., and Popovici, E. M., Power efficient networking using a novel wake-up radio. In: The Proceedings of 5th International Conference on Pervasive Computing Technologies for Healthcare, pp. 139–143, 2011.

  29. Chen, M., et. al., Body area networks: A survey. ACM/Springer Mob. Netw. Appl. 16(2):171–193, 2011.

    Google Scholar 

  30. Saleem, S., et al., A study of IEEE 802.15.4 security framework for wireless body area networks. Sensors 11(2):1383–1395, 2011.

    Article  MathSciNet  Google Scholar 

  31. Radosavac, S., Cardenas, A. A., Baras, J. S., Moustakides, G. V., Detecting IEEE 802.11 MAC layer misbehavior in ad hoc networks: Robust strategies against individual and colluding attackers. J. Comput. Secur. 15: 103–128, 2007.

    Google Scholar 

  32. Shah, R. C., and Yarvis, M., Characteristics of on-body 802.15.4 networks. In Proceedings of 2nd IEEE Workshop on Wireless Mesh Networks. Reston, VA, USA, pp. 138–139, 2006.

  33. Younis, O., and Fahmy, S., Heed: A hybrid, energy-efficient, distributed clustering approach for adhoc sensor networks. IEEE Trans. Mob. Comp. 3:366–379, 2004.

    Article  Google Scholar 

  34. Rajendran, V., Aveces, G. L., Obraczka, K., Energy-efficient, application-aware medium access for sensor networks. In: Proceedings of IEEE Mobile Adhoc and Sensor Systems Conference. Washington, DC, USA, p. 8630, 2005.

  35. Heinzelman, W. R., et al., Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui Kula, HI, USA, 2000.

  36. IEEE 802.15.3 Website, http://www.ieee802.org/15/pub/TG3.html Data visited: 23 Feb. 2013

  37. Ye, W., and Estrin, H. J., An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Miami, FL, USA, pp. 1567-1576, 2002.

  38. Dam, V. T., and Langendoen, K., An adaptive energy-efficient MAC protocol for WSNs. In: Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems (Sen-Sys). Los Angeles, CA, pp. 171-180, 2003.

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project no. RGP-VPP-220.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Ullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, S., Alamri, A. A Secure RFID-based WBAN for Healthcare Applications. J Med Syst 37, 9961 (2013). https://doi.org/10.1007/s10916-013-9961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-013-9961-4

Keywords

Navigation