Skip to main content
Log in

Linkage of Data from Diverse Data Sources (LDS): A Data Combination Model Provides Clinical Data of Corresponding Specimens in Biobanking Information System

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

To provide sufficient clinical data for corresponding specimens from diverse databases established before the implementation of biobanks for research purposes with respect to data privacy regulations. For this purpose, we developed a data model called “linkage of data from diverse data sources (LDS)”. The data model was developed to merge clinical data from an existing local database with biospecimen repository data in our serum bank for uro-oncology. This concept combines two data models based on XML: the first stores information required to connect multiple data sources and retrieve clinical data, and the second provides a data architecture to acquire clinical and repository data. All data were anonymized and encrypted using the Advanced Encryption Standard. X.509 certificates were applied to secure data access. Furthermore, we tested the feasibility of implementing these models in the information management system for biobanking. The data concept can provide clinical and repository data of biospecimens. Only authorized receivers can access these data. Sensitive and personal data are not accessible by the data receivers. The data receiver cannot backtrack to the individual donor using the data model. The acquired data can be converted into a text file format supported by familiar statistical software. Supplementary tools were implemented to generate and view XML documents based on these data models. This data model provides an effective approach to distribute clinical and repository data from different data sources to enable data analysis compliant with data privacy regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Payne, P. R. O., Johnson, S. B., Starren, J. B., Tilson, H. H., and Dowdy, D., Breaking the translational barriers: the value of integrating biomedical informatics and translational research. J. Investig. Med.: Off. Publ. Am. Fed Clin. Res. 53(4):192–200, 2005.

    Article  Google Scholar 

  2. Zerhouni, E. A., Clinical research at a crossroads: the NIH roadmap. J. Investig. Med.: Off. Publ. Am. Fed Clin. Res. 54(4):171–173, 2006.

    Article  Google Scholar 

  3. Crowley, W. F., Jr., Sherwood, L., Salber, P., Scheinberg, D., Slavkin, H., Tilson, H., et al., Clinical research in the United States at a crossroads: Proposal for a novel public-private partnership to establish a national clinical research enterprise. JAMA 291(9):1120–1126, 2004.

    Article  Google Scholar 

  4. Westfall, J. M., Mold, J., and Fagnan, L., Practice-based research—“Blue Highways” on the NIH roadmap. JAMA 297(4):403–406, 2007. doi:10.1001/jama.297.4.403.

    Article  Google Scholar 

  5. Lucan, S. C., Barg, F. K., Bazemore, A. W., and Phillips, R. L., Jr., Family medicine, the NIH, and the medical═research roadmap: Perspectives from inside the NIH. Fam. Med. 41(3):188–196, 2009.

    Google Scholar 

  6. Williams, R. L., Johnson, S. B., Greene, S. M., Larson, E. B., Green, L. A., Morris, A., et al., Signposts along the NIH roadmap for reengineering clinical research: Lessons from the Clinical Research Networks initiative. Arch. Intern. Med. 168(17):1919–1925, 2008. doi:10.1001/archinte.168.17.1919.

    Article  Google Scholar 

  7. Ammenwerth, E., and Spotl, H. P., The time needed for clinical documentation versus direct patient care. A work-sampling analysis of physicians’ activities. Methods Inf. Med. 48(1):84–91, 2009.

    Google Scholar 

  8. Kush, R., Alschuler, L., Ruggeri, R., Cassells, S., Gupta, N., Bain, L., et al., Implementing Single Source: The STARBRITE proof-of-concept study. J. Am. Med. Inform. Assoc. 14(5):662–673, 2007. doi:10.1197/jamia.M2157.

    Article  Google Scholar 

  9. Eminaga, O., Abbas, M., Hinkelammert, R., Titze, U., Bettendorf, O., Eltze, E., et al., CMDX(c)-based single source information system for simplified quality management and clinical research in prostate cancer. BMC Med. Inform. Decis. Mak. 12:141, 2012. doi:10.1186/1472-6947-12-141.

    Article  Google Scholar 

  10. Vegvari, A., Welinder, C., Lindberg, H., Fehniger, T. E., and Marko-Varga, G., Biobank resources for future patient care: Developments, principles and concepts. J. Clin. Bioinforma. 1(1):24, 2011. doi:10.1186/2043-9113-1-24.

    Article  Google Scholar 

  11. Reis, S. T., Feitosa, E. B., Pontes-Junior, J., Marin, C. C., Abe, D. K., Crippa, A., et al., Tumor banks: The cornerstone of basic research in urology. Int. Braz J Urol 36(3):348–354, 2010.

    Google Scholar 

  12. Hirtzlin, I., Dubreuil, C., Preaubert, N., Duchier, J., Jansen, B., Simon, J., et al., An empirical survey on biobanking of human genetic material and data in six EU countries. Eur. J. Hum. Genet. 11(6):475–488, 2003. doi:10.1038/sj.ejhg.5201007.

    Article  Google Scholar 

  13. Riegman, P. H., Morente, M. M., Betsou, F., de Blasio, P., and Geary, P., Marble Arch International Working Group on Biobanking for Biomedical R. Biobanking for better healthcare. Mol. Oncol. 2(3):213–222, 2008. doi:10.1016/j.molonc.2008.07.004.

    Article  Google Scholar 

  14. Troyer, D., Biorepository standards and protocols for collecting, processing, and storing human tissues. Methods Mol. Biol. 441:193–220, 2008. doi:10.1007/978-1-60327-047-2_13.

    Article  Google Scholar 

  15. Mohanty, S. K., Mistry, A. T., Amin, W., Parwani, A. V., Pople, A. K., Schmandt, L., et al., The development and deployment of Common Data Elements for tissue banks for translational research in cancer - an emerging standard based approach for the Mesothelioma Virtual Tissue Bank. BMC Cancer. 8:91, 2008. doi: 10.1186/1471-2407-8-91.

  16. Watson, P. H., Wilson-McManus, J. E., Barnes, R. O., Giesz, S. C., Png, A., Hegele, R. G., et al., Evolutionary concepts in biobanking - the BC BioLibrary. J. Transl. Med. 7:95, 2009. doi: 10.1186/1479-5876-7-95.

    Google Scholar 

  17. Voidonikolas, G., Gingras, M. C., Hodges, S., McGuire, A. L., Chen, C., Gibbs, R. A., et al., Developing a tissue resource to characterize the genome of pancreatic cancer. World J. Surg. 33(4):723–731, 2009. doi:10.1007/s00268-008-9877-1.

    Article  Google Scholar 

  18. Goebell, P. J., and Morente, M. M., New concepts of biobanks–strategic chance for uro-oncology. Urol. Oncol. 28(4):449–457, 2010. doi:10.1016/j.urolonc.2010.03.012.

    Article  Google Scholar 

  19. Sheldon, E., Vo, K. C., McIntire, R. A., Aghajanova, L., Zelenko, Z., Irwin, J. C., et al., Biobanking human endometrial tissue and blood specimens: Standard operating procedure and importance to reproductive biology research and diagnostic development. Fertil. Steril. 95(6):2120–2122, 2011. doi:10.1016/j.fertnstert.2011.01.164. 2 e1-12.

    Article  Google Scholar 

  20. Spath, M. B., and Grimson, J., Applying the archetype approach to the database of a biobank information management system. Int. J. Med. Inform. 80(3):205–226, 2011. doi:10.1016/j.ijmedinf.2010.11.002.

    Article  Google Scholar 

  21. Cancer Data Standards Registry and Repository (caDSR) 2012 [cited 2012 22.12.2012]. Available from: https://cabig.nci.nih.gov/community/concepts/caDSR/.

  22. Riegman, P. H., Morente, M. M., Betsou, F., de Blasio, P., and Geary, P., Biobanking for better healthcare. Mol. Oncol. 2(3):213–222, 2008. doi:10.1016/j.molonc.2008.07.004.

    Article  Google Scholar 

  23. Balogun, N., Gentry-Maharaj, A., Wozniak, E. L., Lim, A., Ryan, A., Ramus, S. J., et al., Recruitment of newly diagnosed ovarian cancer patients proved challenging in a multicentre biobanking study. J. Clin. Epidemiol. 64(5):525–530, 2011. doi:10.1016/j.jclinepi.2010.07.008.

    Article  Google Scholar 

  24. Beyer, C., Distler, J. H., Allanore, Y., Aringer, M., Avouac, J., Czirjak, L., et al., EUSTAR biobanking: recommendations for the collection, storage and distribution of biospecimens in scleroderma research. Ann. Rheum. Dis. 70(7):1178–1182, 2011. doi:10.1136/ard.2010.142489.

    Article  Google Scholar 

  25. Muilu, J., Peltonen, L., and Litton, J. E., The federated database–a basis for biobank-based post-genome studies, integrating phenome and genome data from 600,000 twin pairs in Europe. Eur. J. Hum. Genet. 15(7):718–723, 2007. doi:10.1038/sj.ejhg.5201850.

    Article  Google Scholar 

  26. Marko-Varga, G., BioBanking - The Holy Grail of novel drug and diagnostic developments? J. Clin. Bioinforma. 1(1):14, 2011. doi:10.1186/2043-9113-1-14.

    Article  Google Scholar 

  27. Kato, H., Nishimura, T., Ikeda, N., Yamada, T., Kondo, T., Saijo, N., et al., Developments for a growing Japanese patient population: Facilitating new technologies for future health care. J. Proteomics 74(6):759–764, 2011. doi:10.1016/j.jprot.2010.12.006.

    Article  Google Scholar 

  28. Abdollah, F., Sun, M., Suardi, N., Gallina, A., Capitanio, U., Bianchi, M., et al., Presence of positive surgical margin in patients with organ-confined prostate cancer equals to extracapsular extension negative surgical margin. A plea for TNM staging system reclassification. Urol. Oncol. 2012. doi:10.1016/j.urolonc.2012.04.013.

    Google Scholar 

  29. Kopp, R. P., Stroup, S. P., Schroeck, F. R., Freedland, S. J., Millard, F., Terris, M. K., et al., Are repeat prostate biopsies safe? A cohort analysis from the SEARCH database. J. Urol. 187(6):2056–2060, 2012. doi:10.1016/j.juro.2012.01.083.

    Article  Google Scholar 

  30. Announcing the ADVANCED ENCRYPTION STANDARD (AES) 2012 [cited 17.12.2012 2012]. Available from: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

  31. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes 2012 [cited 2012 17.12.2012]. Available from: http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.

  32. Hohnstädt C. XCA - X Certificate and key management 2012 [cited 2013 09.08.2013]. Available from: http://xca.sourceforge.net.

  33. XML Encryption and Digital Signatures: Microsoft; 2013 [cited 2013 09.08.2013]. Available from: http://msdn.microsoft.com/en-us/library/ms229749.aspx.

  34. caBIG® - Biobanking management system (caTissue) 2012 [cited 2012 16.12.2012]. Available from: http://cabig.cancer.gov/solutions/applications/catissue/.

  35. Breil, B., Semjonow, A., and Dugas, M., HIS-based electronic documentation can significantly reduce the time from biopsy to final report for prostate tumours and supports quality management as well as clinical research. BMC Med. Inform. Decis. Mak. 9:5, 2009. doi:10.1186/1472-6947-9-5.

    Article  Google Scholar 

  36. Dugas, M., Breil, B., Thiemann, V., Lechtenborger, J., and Vossen, G., Single source information systems to connect patient care and clinical research. Stud. Health Technol. Inform. 150:61–65, 2009.

    Google Scholar 

  37. Mulvenna, J., Yonglitthipagon, P., Sripa, B., Brindley, P. J., Loukas, A., and Bethony, J. M., Banking on the future: Biobanking for “omics” approaches to biomarker discovery for Opisthorchis-induced cholangiocarcinoma in Thailand. Parasitol. Int. 2011. doi:10.1016/j.parint.2011.06.005.

    Google Scholar 

  38. Yuille, M., van Ommen, G. J., Brechot, C., Cambon-Thomsen, A., Dagher, G., Landegren, U., et al., Biobanking for Europe. Brief. Bioinform. 9(1):14–24, 2008. doi:10.1093/bib/bbm050.

    Article  Google Scholar 

  39. CDE Browser 2012 [cited 2012 22.12.2012]. Available from: https://cabig.nci.nih.gov/community/tools/CDE_Browser.

  40. Anonymous. Parallels Desktop 8 for Mac 2012 [cited 2012 24.12.2012]. Available from: http://www.parallels.com/de/products/desktop/.

  41. Anonymous. Oracle VM VirtualBox 2012 [cited 2012 24.12.2012]. Available from: https://http://www.virtualbox.org.

Download references

Acknowledgments

Special thanks duo to Christiane Ptok for project management.

Conflict of interest

All authors disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okyaz Eminaga.

Additional information

Authors’ contributions

(1) The conception and design of the study: O. Eminaga, A. Semjonow

(2) Acquisition of data: O. Eminaga, I. Akbarov, A. Tok, E. Özgür

(3) Analysis and interpretation of data: O. Eminaga, A. Semjonow

(4) Drafting the article: O. Eminaga

(5) Revising it critically for important intellectual content: S. Wille, J. Herden and U. Engelmann

(6) Final approval of the version to be submitted: All authors.

Summary table

What was already known on the topic?

• Diverse concepts were developed to combine clinical data and related specimen data in biobanking information system.

• Mostly clinical data were stored or imported into biobanking information systems.

• None of recent studies provided concepts to reuse preexisting diverse databases (data sources), and the combination of diverse data sources to generate data containers containing clinical and specimen data in an institution.

What this study added to our knowledge

• The LDS model enables reusing clinical data from preexisting databases.

• The combination of clinical data from diverse data sources can be realized.

• Clinical data can be related to corresponding specimen data without identifying the donor.

• LDS enables reusing the existing data infrastructure.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

Database diagram of the data container in the Department of Urology of University Hospital Cologne (PDF 49 kb)

Additional file 2

Database diagram of the data container in the Department of Urology of University Hospital Münster (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eminaga, O., Özgür, E., Semjonow, A. et al. Linkage of Data from Diverse Data Sources (LDS): A Data Combination Model Provides Clinical Data of Corresponding Specimens in Biobanking Information System. J Med Syst 37, 9975 (2013). https://doi.org/10.1007/s10916-013-9975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-013-9975-y

Keywords

Navigation