Skip to main content

Advertisement

EHR in Emergency Rooms: Exploring the Effect of Key Information Components on Main Complaints

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This study characterizes the information components associated with improved medical decision-making in the emergency room (ER). We looked at doctors’ decisions to use or not to use information available to them on an electronic health record (EHR) and a Health Information Exchange (HIE) network, and tested for associations between their decision and parameters related to healthcare outcomes and processes. Using information components from the EHR and HIE was significantly related to improved quality of healthcare processes. Specifically, it was associated with both a reduction in potentially avoidable admissions as well as a reduction in rapid readmissions. Overall, the three information components; namely, previous encounters, imaging, and lab results emerged as having the strongest relationship with physicians’ decisions to admit or discharge. Certain information components, however, presented an association between the diagnosis and the admission decisions (blood pressure was the most strongly associated parameter in cases of chest pain complaints and a previous surgical record for abdominal pain). These findings show that the ability to access patients’ medical history and their long term health conditions (via the EHR), including information about medications, diagnoses, recent procedures and laboratory tests is critical to forming an appropriate plan of care and eventually making more accurate admission decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fontaine, P., Ross, S. E., Zink, T., and Schilling, L. M., Systematic review of health information exchange in primary care practices. J. Am. Board Fam. Med. 23:655–670, 2010.

    Article  Google Scholar 

  2. Walter, S., Kostopoulos, P., Haass, A., Lesmeister, M., Grasu, M., Grunwald, I., Keller, I., Helwig, S., Becker, C., Geisel, J., Bertsch, T., Kaffiné, S., Leingärtner, A., Papanagiotou, P., Roth, C., Liu, Y., Reith, W., and Fassbender, K., Point-of-care laboratory halves door-to-therapy decision time in acute stroke. Ann. Neurol. 69:581–586, 2011.

    Article  Google Scholar 

  3. Tierney, W. M., Improving clinical decisions and outcomes with information: a review. Int. J. Med. Inform. 62(1):1–9, 2001.

    Article  Google Scholar 

  4. Phansalker, S., Edworthy, J., Hellier, E., Seger, D. L., Schedlbauer, A., Avery, A. J., and Bates, D. W., A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems. J. Am. Med. Inform. Assoc. 17(5):493–501, 2010.

    Article  Google Scholar 

  5. Li, J.-S., Zhang, X. G., Wang, H. Q., Wang, Y., Wang, J. M., and Shao, Q. D., The meaningful use of EMR in Chinese hospitals: A case study on curbing antibiotic abuse. J. Med. Syst. 37(2):1–10, 2013.

    Article  Google Scholar 

  6. Faisal, A., Parveen, S., Badsha, S., Sarwar, H., and Reza, A. W., Computer assisted diagnostic system in tumor radiography. J. Med. Syst. 37(3):1–10, 2013.

    Article  Google Scholar 

  7. Choi, C. K., Saberito, D., Tyagaraj, C., and Tyagaraj, K., Organizational performance and regulatory compliance as measured by clinical pertinence indicators before and after implementation of Anesthesia Information Management System (AIMS). J. Med. Syst. 38(1):1–6, 2014.

    Article  Google Scholar 

  8. Devaraj, S., and Kohli, R., Information technology payoff in the health-care industry: A longitudinal study. J. Manag. Inform. Syst. 16(4):41–68, 2000.

    Google Scholar 

  9. Zhang, N. J., Seblega, B., Wan, T., Unruh, L., Agiro, A., and Miao, L., Health information technology adoption in US acute care hospitals. J. Med. Syst. 37(2):1–9, 2013.

    Article  Google Scholar 

  10. Furukawa, M. F., Patel, V., Charles, D., Swain, M., and Mostashari, F., Hospital electronic health information exchange grew substantially in 2008–12. Health Aff. 32(8):1346–1354, 2013.

    Article  Google Scholar 

  11. Walker, J., Pan, E., Johnston, D., Milstein, J. A., Bates, D. W., and Middleton, B., The value of health care information exchange and interoperability. Health Aff. 24:10–18, 2005.

    Article  Google Scholar 

  12. Takian, A., Sheikh, A., and Barber, N., We are bitter, but we are better off: Case study of the implementation of an electronic health record system into a mental health hospital in England. BMC Health Serv. Res. 12:484, 2012.

    Article  Google Scholar 

  13. Richardson, D., No relationship between emergency department activity and triage categorization. Acad. Emerg. Med. 5(2):141–145, 1998.

    Article  Google Scholar 

  14. Dean, N. C., Suchyta, M. R., Bateman, K. A., Aronsky, D., and Hadlock, C. J., Implementation of admission decision support for community-acquired pneumonia. A pilot study. CHEST J. 117(5):1368–1377, 2000.

    Article  Google Scholar 

  15. Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arellano, M. P., Devereaux, P. J., Beyene, J., Sam, J., and Haynes, R. B., Effects of computerized clinical decision support systems on practitioner performance and patient outcomes. JAMA 293(10):1223–1238, 2005.

    Article  Google Scholar 

  16. Ben-Assuli, O., Leshno, M., and Shabtai, I., Using electronic medical record systems for admission decisions in emergency departments: Examining the crowdedness effect. J. Med. Syst. 36(6):3795–3803, 2012.

    Article  Google Scholar 

  17. Frisse, M. E., and Holmes, R. L., Estimated financial savings associated with health information exchange and ambulatory care referral. J. Biomed. Inform. 40(6):S27–S32, 2007.

    Article  Google Scholar 

  18. Maisels, M. J., and Kring, E., Length of stay, jaundice, and hospital readmission. Pediatrics 101(6):995–998, 1998.

    Article  Google Scholar 

  19. Ramachandran, S., Erraguntla, M., Mayer, R., and Benjamin, P., Data mining in military health systems-clinical and administrative applications. In Automation Science and Engineering, 2007. CASE 2007. IEEE International Conference on (pp. 158–163), 2007.

  20. Axon, R. N., and Williams, M. V., Hospital readmission as an accountability measure. JAMA 305(5):504–505, 2011.

    Article  Google Scholar 

  21. Fischer, C., Anema, H. A., and Klazinga, N. S., The validity of indicators for assessing quality of care: A review of the European literature on hospital readmission rate. Eur. J. Public Health 22(4):484–491, 2012.

    Article  Google Scholar 

  22. Van Walraven, C., Jennings, A., and Forster, A. J., A meta–analysis of hospital 30–day avoidable readmission rates. J. Eval. Clin. Pract. 18(6):1211–1218, 2012.

    Article  Google Scholar 

  23. Denman-Johnson, M., Bingham P and e a confidential enquiry into emergency hospital admissions on the isle of Wight, UK. Br. Med. J. 51:386–390, 1997.

    Google Scholar 

  24. Shabtai, I., Leshno, M., Blondheim, O., and Kornbluth, J., The value of information for decision-making in the healthcare environment. Stud. Health Technol. Inform. 127:91, 2007.

    Google Scholar 

  25. Cabrnoch, M., and Hasić, B., Electronic health book—a unique Czech solution for eHealth. Heal. Technol. 1:57–69, 2011.

    Article  Google Scholar 

  26. Jarvis, B., Johnson, T., Butler, P., O’Shaughnessy, K., Fullam, F., Tran, L., and Gupta, R., Assessing the impact of electronic health records as an enabler of hospital quality and patient satisfaction. Acad. Med. J. Assoc. Am. Med. Coll. 88(10):1471–1477, 2013.

    Article  Google Scholar 

  27. Ballard, D. W., Rauchwerger, A. S., Reed, M. E., Vinson, D. R., Mark, D. G., Offerman, S. R., Chettipally, U. K. C., Graets, I., Dayan, P., and Kuppermann, N., Emergency physicians’ knowledge and attitudes of clinical decision support in the electronic health record: A survey–based study. Acad. Emerg. Med. 20(4):352–360, 2013.

    Article  Google Scholar 

  28. Heiro, E., and Mäntymäki, M., Managing medication information with electronic patient records – a Finnish clinicians’ perspective. Heal. Technol. 2:113–122, 2012.

    Article  Google Scholar 

  29. Raja, A. S., Ip, I. K., Prevedello, L. M., Sodickson, A. D., Farkas, C., Zane, R. D., Hanson, R., Goldhaber, S. Z., Gill, R. R., and Khorasani, R., Effect of computerized clinical decision support on the use and yield of CT Pulmonary Angiography in the emergency department. Radiology 262:468–474, 2012.

    Article  Google Scholar 

  30. Jones, S. S., Rudin, R. S., Perry, T., and Shekelle, P. G., Health information technology: An updated systematic review with a focus on meaningful use. Improv. Patient Care 160(1):48–55, 2014.

    Google Scholar 

  31. Ben-Assuli, O., Shabtai, I., and Leshno, M., The impact of EHR and HIE on reducing avoidable admissions: Controlling main differential diagnoses. BMC Med. Informa. Decis. Making 13:49, 2013.

    Article  Google Scholar 

  32. Loekito, E., Bailey, J., Bellomo, R., Hart, G. K., Hegarty, C., Davey, P., Bain, C., Pilcher, D., and Schneider, H., Common laboratory tests predict imminent medical emergency team calls, intensive care unit admission or death in emergency department patients. Emerg. Med. Australas. 25(2):132–139, 2013.

    Article  Google Scholar 

  33. Gleeson, F. V., and Gordon, I., Imaging in urinary tract infection. Arch. Dis. Child. 66(11):1282–1283, 1991.

    Article  Google Scholar 

  34. Dick, P. T., and Feldman, W., Routine diagnostic imaging for childhood urinary tract infections: A systematic overview. J. Pediatr. 128(1):15–22, 1996.

    Article  Google Scholar 

  35. Snodgrass, W. T., and Bush, N. C., Urinary tract infection. In Pediatric Urology. New York: Springer. 1–17, 2013.

  36. Blumenthal, D., Stimulating the adoption of health information technology. New Engl. J. Med. 360:1477–1479, 2009.

    Article  Google Scholar 

  37. Rokos, I. C., French, W. J., Mattu, A., Nichol, G., Farkouh, M. E., Reiffel, J., and Stone, G. W., Appropriate cardiac cath lab activation: Optimizing electrocardiogram interpretation and clinical decision-making for acute ST-elevation myocardial infarction. Am. Heart J. 160:995–1003, 2010.

    Article  Google Scholar 

  38. Francis, S. A., Daly, C., Heydari, B., Abbasi, S., Shah, R. V., and Kwong, R. Y., Cost-effectiveness analysis for imaging techniques with a focus on cardiovascular magnetic resonance. J. Cardiov. Magn. Reson. 15(1):52–63, 2013.

    Article  Google Scholar 

  39. Bailey, J. E., Pope, R. A., Elliott, E. C., Wan, J. Y., Waters, T. M., and Frisse, M. E., Health information exchange reduces repeated diagnostic imaging for back pain. Ann. Emerg. Med. 61(1):16–24, 2013.

    Article  Google Scholar 

  40. AlJarullah, A., and El-Masri, S., A novel system architecture for the national integration of electronic health records: A semi-centralized approach. J. Med. Syst. 37(4):1–20, 2013.

    Article  Google Scholar 

  41. Peleg, M., Computer-interpretable clinical guidelines: A methodological review. J. Biomed. Inform. 46(4):744–763, 2013.

    Article  Google Scholar 

  42. Bernstein, S. L., Aronsky, D., Duseja, R., Epstein, S., Handel, D., Hwang, U., McCarthy, M., McConnell, K. J., Pines, J. M., Rathlev, N., Schafermeyer, R., Zwemer, F., Schull, M., Brent, R., and Asplin, B. R., The effect of emergency department crowding on clinically oriented outcomes. Acad. Emerg. Med. 16:1–10, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofir Ben-Assuli.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Assuli, O., Shabtai, I., Leshno, M. et al. EHR in Emergency Rooms: Exploring the Effect of Key Information Components on Main Complaints. J Med Syst 38, 36 (2014). https://doi.org/10.1007/s10916-014-0036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0036-y

Keywords