Skip to main content

Advertisement

Log in

Impact of Ensemble Learning in the Assessment of Skeletal Maturity

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The assessment of the bone age, or skeletal maturity, is an important task in pediatrics that measures the degree of maturation of children’s bones. Nowadays, there is no standard clinical procedure for assessing bone age and the most widely used approaches are the Greulich and Pyle and the Tanner and Whitehouse methods. Computer methods have been proposed to automatize the process; however, there is a lack of exploration about how to combine the features of the different parts of the hand, and how to take advantage of ensemble techniques for this purpose. This paper presents a study where the use of ensemble techniques for improving bone age assessment is evaluated. A new computer method was developed that extracts descriptors for each joint of each finger, which are then combined using different ensemble schemes for obtaining a final bone age value. Three popular ensemble schemes are explored in this study: bagging, stacking and voting. Best results were achieved by bagging with a rule-based regression (M5P), scoring a mean absolute error of 10.16 months. Results show that ensemble techniques improve the prediction performance of most of the evaluated regression algorithms, always achieving best or comparable to best results. Therefore, the success of the ensemble methods allow us to conclude that their use may improve computer-based bone age assessment, offering a scalable option for utilizing multiple regions of interest and combining their output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poznanski, A. K., Hernandez, R. J., Guire, K. E., Bereza, U. L., and Garn, S. M., Carpal length in children–a useful measurement in the diagnosis of rheumatoid arthritis and some concenital malformation syndromes. Radiology 129(3):661–668, 1978.

    Google Scholar 

  2. Greulich, W. W., and Pyle, S. I., Radiographic Atlas of Skeletal Development of Hand and Wrist, 2nd edition. Stanford Univ. Press, Stanford, 1959.

    Google Scholar 

  3. Tanner, J. M., Cameron, N., Goldstein, H., and Healy, M. J. R., Assessment of skeletal maturity and prediction of adult height (TW3 method). Saunders Co., WB, 2001.

    Google Scholar 

  4. Berst, M. J., Dolan, L., Bogdanowicz, M. M., Stevens, M. A., Chow, S., and Brandser, E. A., Effect of knowledge of chronologic age on the variability of pediatric bone age determined using the Greulich and Pyle standards. AJR American journal of roentgenology 176(2):507–510, 2001. doi:10.2214/ajr.176.2.1760507.

    Article  Google Scholar 

  5. Bull, R. K., Edwards, P. D., Kemp, P. M., Fry, S., and Hughes, I. A., Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Archives of Disease in Childhood 81(2):172–173, 1999. doi:10.1136/adc.81.2.172.

    Article  Google Scholar 

  6. King, D. G., Steventon, D. M., O’Sullivan, M. P., Cook, A. M., Hornsby, V. P., Jefferson, I. G., and King, P. R., Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods. The British journal of radiology 67(801):848–851, 1994.

    Article  Google Scholar 

  7. Thodberg, H. H., Kreiborg, S., Juul, A., and Pedersen, K. D., The BoneXpert method for automated determination of skeletal maturity. Medical Imaging, IEEE Transactions on 28(1):52–66, 2009.

    Article  Google Scholar 

  8. Yildiz, M., Guvenis, A., Guven, E., Talat, D., and Haktan, M., Implementation and Statistical Evaluation of a Web-Based Software for Bone Age Assessment. J Med Syst 35(6):1485–1489, 2011. doi:10.1007/s10916-009-9425-z.

    Article  Google Scholar 

  9. Michael, D. J., and Nelson, A. C., HANDX: a model-based system for automatic segmentation of bones from digital hand radiographs. Medical Imaging, IEEE Transactions on 8(1):64–69, 1989. doi:10.1109/42.20363.

    Article  Google Scholar 

  10. Pietka, E., Gertych, A., Pospiech, S., Fei, C., Huang, H. K., and Gilsanz, V., Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction. Medical Imaging, IEEE Transactions on 20(8):715–729, 2001. doi:10.1109/42.938240.

    Article  Google Scholar 

  11. Pietka, E., Pospiech-Kurkowska, S., Gertych, A., and Cao, F., Integration of computer assisted bone age assessment with clinical PACS. Computerized medical imaging and graphics 27(2–3):217–228, 2003. doi:10.1016/s0895-6111(02)00076-9.

    Article  Google Scholar 

  12. Niemeijer M, van Ginneken B, Maas CA, Beek FJ, Viergever MA Assessing the skeletal age from a hand radiograph: automating the Tanner- Whitehouse method. In, 2003. pp 1197–1205

  13. Giordano, D., Spampinato, C., Scarciofalo, G., and Leonardi, R., An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones. Instrumentation and Measurement, IEEE Transactions on 59(10):2539–2553, 2010.

    Article  Google Scholar 

  14. Thodberg, H. H., and Sävendahl, L., Validation and Reference Values of Automated Bone Age Determination for Four Ethnicities. Academic Radiology 17(11):1425–1432, 2010. doi:10.1016/j.acra.2010.06.007.

  15. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J., Active shape models-their training and application. Computer vision and image understanding 61(1):38–59, 1995.

  16. Kroon D-J (2010) Active Shape Model (ASM) and Active Appearance Model (AAM): Cootes 2D/3D Active Shape & Appearance Model for automatic image object segmentation and recognition. http://www.mathworks.com/matlabcentral/fileexchange/26706-active-shape-model-asm–and-active-appearance-model–aam-.

  17. Kroon D-J (2011) Segmentation of the mandibular canal in cone-beam CT data. Enschede, the Netherlands

  18. Cunha, P., Guevara, M., Messias, A., Rocha, S., Reis, R., and Nicolau, P. G., A method for segmentation of dental implants and crestal bone. International Journal of Computer Assisted Radiology and Surgery 8(5):711–721, 2013. doi:10.1007/s11548-012-0802-6.

    Article  Google Scholar 

  19. Logeswaran, R., Segment-growing Hierarchical Model for Bile Duct Detection in MRCP. J Med Syst 33(6):423–433, 2009. doi:10.1007/s10916-008-9204-2.

    Article  Google Scholar 

  20. Zakeri, F., Behnam, H., and Ahmadinejad, N., Classification of Benign and Malignant Breast Masses Based on Shape and Texture Features in Sonography Images. J Med Syst 36(3):1621–1627, 2012. doi:10.1007/s10916-010-9624-7.

    Article  Google Scholar 

  21. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In: Paul SH (ed) Graphics gems IV. Academic Press Professional, Inc., pp 474–485

  22. Chan, T. F., and Vese, L. A., Active contours without edges. Image Processing, IEEE Transactions on 10(2):266–277, 2001. doi:10.1109/83.902291.

    Article  MATH  Google Scholar 

  23. Rokach, L., Ensemble-based classifiers. Artif Intell Rev 33(1–2):1–39, 2010. doi:10.1007/s10462-009-9124-7.

    Article  Google Scholar 

  24. Sengur, A., Support Vector Machine Ensembles for Intelligent Diagnosis of Valvular Heart Disease. J Med Syst 36(4):2649–2655, 2012. doi:10.1007/s10916-011-9740-z.

    Article  Google Scholar 

  25. Breiman, L., Bagging predictors. Mach Learn 24(2):123–140, 1996. doi:10.1007/BF00058655.

    MATH  MathSciNet  Google Scholar 

  26. Kuncheva LI (2004) Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,

  27. Wolpert, D. H., Stacked generalization. Neural networks 5(2):241–259, 1992.

    Article  MathSciNet  Google Scholar 

  28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H., The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1):10–18, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Cloud Thinking project (CENTRO-07-ST24-FEDER-002031), co-funded by “Quadro de Referência Estratégica Nacional “(QREN), “Mais Centro” program.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Cunha.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(csv 1.96 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, P., Moura, D.C., Guevara López, M.A. et al. Impact of Ensemble Learning in the Assessment of Skeletal Maturity. J Med Syst 38, 87 (2014). https://doi.org/10.1007/s10916-014-0087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0087-0

Keywords

Navigation