Skip to main content
Log in

Use of an Agent-Based Simulation Model to Evaluate a Mobile-Based System for Supporting Emergency Evacuation Decision Making

  • Mobile Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Recently, mass casualty incidents (MCIs) have been occurring frequently and have gained international attention. There is an urgent need for scientifically proven and effective emergency responses to MCIs, particularly as the severity of incidents is continuously increasing. The emergency response to MCIs is a multi-dimensional and multi-participant dynamic process that changes in real-time. The evacuation decisions that assign casualties to different hospitals in a region are very important and impact both the results of emergency treatment and the efficiency of medical resource utilization. Previously, decisions related to casualty evacuation were made by an incident commander with emergency experience and in accordance with macro emergency guidelines. There are few decision-supporting tools available to reduce the difficulty and psychological pressure associated with the evacuation decisions an incident commander must make. In this study, we have designed a mobile-based system to collect medical and temporal data produced during an emergency response to an MCI. Using this information, our system’s decision-making model can provide personal evacuation suggestions that improve the overall outcome of an emergency response. The effectiveness of our system in reducing overall mortality has been validated by an agent-based simulation model established to simulate an emergency response to an MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yurt, R. W., Bessey, P. Q., Alden, N. E., Meisels, D., Delaney, J. J., Rabbitts, A., and Greene, W. T., Burn-injured patients in a disaster: September 11th revisited. J. Burn Care Res. 27(5):635–641, 2006. doi:10.1097/01.bcr.0000236836.46410.f2.

    Article  Google Scholar 

  2. Turegano-Fuentes, F., Perez-Diaz, D., Sanz-Sanchez, M., and Alonso, J. O., Overall asessment of the response to terrorist bombings in trains, Madrid, 11 March 2004. Eur. J. Trauma Emerg. Surg. 34(5):433–441, 2008. doi:10.1007/s00068-008-8805-2.

    Article  Google Scholar 

  3. Aylwin, C. J., Konig, T. C., Brennan, N. W., Shirley, P. J., Davies, G., Walsh, M. S., and Brohi, K., Reduction in critical mortality in urban mass casualty incidents: analysis of triage, surge, and resource use after the London bombings on July 7, 2005. Lancet 368(9554):2219–2225, 2006. doi:10.1016/s0140-6736(06)69896-6.

    Article  Google Scholar 

  4. D’Andrea, S. M., Goralnick, E., and Kayden, S. R., 2013 Boston marathon bombings: Overview of an emergency department response to a Mass Casualty Incident. Dis. Med. Public Health Prep 7(2):118–121, 2013. doi:10.1017/dmp.2013.53.

    Article  Google Scholar 

  5. Raiter, Y., Farfel, A., Lehavi, O., Goren, O. B., Shamiss, A., Priel, Z., Koren, I., Davidson, B., Schwartz, D., Goldberg, A., and Bar-Dayan, Y., Mass casualty incident management, triage, injury distribution of casualties and rate of arrival of casualties at the hospitals: lessons from a suicide bomber attack in downtown Tel Aviv. Emerg. Med. J. 25(4):225–229, 2008. doi:10.1136/emj.2007.052399.

    Article  Google Scholar 

  6. Derlet, R. W., and Richards, J. R., Overcrowding in the nation’s emergency departments: Complex causes and disturbing effects. Ann. Emerg. Med. 35(1):63–68, 2000. doi:10.1016/S0196-0644(00)70105-3.

    Article  Google Scholar 

  7. Kadri, F., Harrou, F., Chaabane, S., and Tahon, C., Time series modelling and forecasting of emergency department overcrowding. J. Med. Syst. 38(9):1–20, 2014. doi:10.1007/s10916-014-0107-0.

    Article  Google Scholar 

  8. Hirshberg, A., Holcomb, J. B., and Mattox, K. L., Hospital trauma care in multiple-casualty incidents: A critical view. Ann. Emerg. Med. 37(6):647–652, 2001. doi:10.1067/mem.2001.115650.

    Article  Google Scholar 

  9. Arora, H., Raghu, T. S., and Vinze, A., Resource allocation for demand surge mitigation during disaster response. Decis. Support. Syst. 50(1):304–315, 2010. doi:10.1016/j.dss.2010.08.032.

    Article  Google Scholar 

  10. Baker, S. P., O’Neill, B., Haddon, W., Jr., and Long, W. B., The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 14(3):187–196, 1974.

    Article  Google Scholar 

  11. Moore, L., Lavoie, A., LeSage, N., Abdous, B., Bergeron, E., Liberman, M., and Emond, M., Statistical validation of the Revised Trauma Score. J Trauma Inj. Infect. Crit. Care 60(2):305–311, 2006. doi:10.1097/01.ta.0000200840.89685.b0.

    Article  Google Scholar 

  12. Demetriades, D., Chan, L. S., Velmahos, G., Berne, T. V., Cornwell, E. E., Belzberg, H., Asensio, J. A., Murray, J., Berne, J., and Shoemaker, W., TRISS methodology in trauma: the need for alternatives. Br. J. Surg. 85(3):379–384, 1998. doi:10.1046/j.1365-2168.1998.00610.x.

    Article  Google Scholar 

  13. Ryan, J. M., and Doll, D., In: Velmahos, G. C. C., Degiannis, E., and Doll, D. (Eds.), Mass casualties and triage. Springer, Berlin Heidelberg, pp. 151–159, 2012. doi:10.1007/978-3-642-20453-1_21.

    Google Scholar 

  14. Garner, A., Lee, A., Harrison, K., and Schultz, C. H., Comparative analysis of multiple-casualty incident triage algorithms. Ann. Emerg. Med. 38(5):541–548, 2001. doi:10.1067/mem.2001.119053.

    Article  Google Scholar 

  15. Cross, K. P., and Cicero, M. X., Head-to-head comparison of disaster triage methods in pediatric, adult, and geriatric patients. Ann. Emerg. Med. 61(6):668–676.e667, 2013. doi:10.1016/j.annemergmed.2012.12.023.

    Article  Google Scholar 

  16. Jenkins, J. L., McCarthy, M. L., Sauer, L. M., Green, G. B., Stuart, S., Thomas, T. L., and Hsu, E. B., Mass-casualty triage: time for an evidence-based approach. Prehospital Disaster Med. 23(1):3–8, 2008.

    Google Scholar 

  17. Lerner, E. B., Schwartz, R. B., Coule, P. L., and Pirrallo, R. G., Use of SALT triage in a simulated mass-casualty incident. Prehospital Emerg. Care 14(1):21–25, 2010. doi:10.3109/10903120903349812.

    Article  Google Scholar 

  18. Sacco, W. J., Navin, D. M., Fiedler, K. E., Waddell, R. K., II, Long, W. B., and Buckman, R. F., Precise formulation and evidence-based application of resource-constrained triage. Acad. Emerg. Med. 12(8):759–770, 2005. doi:10.1197/j.aem.2005.04.003.

    Article  Google Scholar 

  19. Wallis, L. A., and Carley, S., Validation of the paediatric triage tape. Emerg. Med. J. 23(1):47–50, 2006. doi:10.1136/emj.2005.024893.

    Article  Google Scholar 

  20. Wallis, L. A., and Carley, S., Comparison of paediatric major incident primary triage tools. Emerg. Med. J. 23(6):475–478, 2006. doi:10.1136/emj.2005.032672.

    Article  Google Scholar 

  21. Cicero, M. X., Riera, A., Northrup, V., Auerbach, M., Pearson, K., and Baum, C. R., Design, validity, and reliability of a pediatric resident JumpSTART disaster triage scoring instrument. Acad Pediatr 13(1):48–54, 2013. doi:10.1016/j.acap.2012.09.002.

    Article  Google Scholar 

  22. Timbie, J. W., Ringel, J. S., Fox, D. S., Pillemer, F., Waxman, D. A., Moore, M., Hansen, C. K., Knebel, A. R., Ricciardi, R., and Kellermann, A. L., Systematic review of strategies to manage and allocate scarce resources during mass casualty events. Ann. Emerg. Med. 61(6):677–689.e101, 2013. doi:10.1016/j.annemergmed.2013.02.005.

    Article  Google Scholar 

  23. Kahn, C. A., Schultz, C. H., Miller, K. T., and Anderson, C. L., Does START triage work? An outcomes assessment after a disaster. Ann. Emerg. Med. 54(3):424–430, 2009. doi:10.1016/j.annemergmed.2008.12.035.

    Article  Google Scholar 

  24. Hong, R., Sierzenski, P. R., O’Connor, R. E., Bollinger, M., and Durie, C. C., Does the simple triage and rapid treatment method appropriately triage patients based on trauma injury severity score? Ann. Emerg. Med. 50(3, Supplement):S13, 2007. doi:10.1016/j.annemergmed.2007.06.069.

    Article  Google Scholar 

  25. Hick, J. L., Hanfling, D., and Cantrill, S. V., Allocating scarce resources in disasters: Emergency department principles. Ann. Emerg. Med. 59(3):177–187, 2012. doi:10.1016/j.annemergmed.2011.06.012.

    Article  Google Scholar 

  26. Fiedrich, F., Gehbauer, F., and Rickers, U., Optimized resource allocation for emergency response after earthquake disasters. Saf. Sci. 35(1–3):41–57, 2000. doi:10.1016/S0925-7535(00)00021-7.

    Article  Google Scholar 

  27. Cao, H., and Huang, S., Principles of scarce medical resource allocation in natural disaster relief: A simulation approach. Med. Decis. Mak. 32(3):470–476, 2012. doi:10.1177/0272989x12437247.

    Article  Google Scholar 

  28. Gao, T., and White, D., A next generation electronic triage to aid mass casualty emergency medical response. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference Suppl 6501–6504, 2006. doi:10.1109/iembs.2006.260881.

  29. Gao, T., Massey, T., Selavo, L., Crawford, D., Chen, B. R., Lorincz, K., Shnayder, V., Hauenstein, L., Dabiri, F., Jeng, J., Chanmugam, A., White, D., Sarrafzadeh, M., and Welsh, M., The advanced health and disaster aid network: A light-weight wireless medical system for triage. IEEE Trans. Biomed. Circ. Syst. 1(3):203–216, 2007. doi:10.1109/tbcas.2007.910901.

    Article  Google Scholar 

  30. Morris, T. J., Pajak, J., Havlik, F., Kenyon, J., and Calcagni, D., Battlefield Medical Information System-Tactical (BMIST): the application of mobile computing technologies to support health surveillance in the Department of Defense. Telemed. J. E-Health Off. J. Am. Telemed Assoc 12(4):409–416, 2006. doi:10.1089/tmj.2006.12.409.

    Article  Google Scholar 

  31. Fry, E. A., Lenert, L. A., MASCAL: RFID tracking of patients, staff and equipment to enhance hospital response to mass casualty events. AMIA Annual Symposium proceedings / AMIA Symposium AMIA Symposium 261–265, 2005.

  32. Jokela, J., Simons, T., Kuronen, P., Tammela, J., Jalasvirta, P., Nurmi, J., Harkke, V., and Castren, M., Implementing RFID technology in a novel triage system during a simulated mass casualty situation. Int. J. Electron. Healthc. 4(1):105–118, 2008.

    Article  Google Scholar 

  33. Ingrassia, P. L., Carenzo, L., Barra, F. L., Colombo, D., Ragazzoni, L., Tengattini, M., Prato, F., Geddo, A., and Della Corte, F., Data collection in a live mass casualty incident simulation: automated RFID technology versus manually recorded system. Eur. J. Emerg. Med. 19(1):35–39, 2012. doi:10.1097/MEJ.0b013e328347a2c7.

    Article  Google Scholar 

  34. Lenert, L. A., Kirsh, D., Griswold, W. G., Buono, C., Lyon, J., Rao, R., and Chan, T. C., Design and evaluation of a wireless electronic health records system for field care in mass casualty settings. J. Am. Med. Inform. Assoc. 18(6):842–852, 2011. doi:10.1136/amiajnl-2011-000229.

    Article  Google Scholar 

  35. Tollefsen, W. W., Gaynor, M., Pepe, M., Myung, D., Welsh, M., and Moulton, S., iRevive: a pre-hospital database system for emergency medical services. Int. J. Healthc. Technol. Manag. 6(4):454–469, 2005.

    Article  Google Scholar 

  36. Poulymenopoulou, M., Malamateniou, F., and Vassilacopoulos, G., Emergency healthcare process automation using mobile computing and cloud services. J. Med. Syst. 36(5):3233–3241, 2012. doi:10.1007/s10916-011-9814-y.

    Article  Google Scholar 

  37. Amailef, K., and Lu, J., Mobile-based emergency response system using ontology-supported information extraction. In: Lu, J., Jain, L., and Zhang, G. (Eds.), Handbook on decision making, vol. 33. Intelligent Systems Reference Library, Springer Berlin Heidelberg, pp. 429–449, 2012. doi:10.1007/978-3-642-25755-1_21.

    Chapter  Google Scholar 

  38. Anantharaman, V., and Swee Han, L., Hospital and emergency ambulance link: Using IT to enhance emergency pre-hospital care. Int. J. Med. Inform. 61(2–3):147–161, 2001. doi:10.1016/S1386-5056(01)00137-X.

    Article  Google Scholar 

  39. Mears, G. D., Pratt, D., Glickman, S. W., Brice, J. H., Glickman, L. T., Cabañas, J. G., and Cairns, C. B., The North Carolina EMS data system: A comprehensive integrated emergency medical services quality improvement program. Prehospital Emerg. Care 14(1):85–94, 2010. doi:10.3109/10903120903349846.

    Article  Google Scholar 

  40. Amram, O., Schuurman, N., Hedley, N., and Hameed, S. M., A web-based model to support patient-to-hospital allocation in mass casualty incidents. J. Trauma Acute Care Surg. 72(5):1323–1328, 2012. doi:10.1097/TA.0b013e318246e879.

    Google Scholar 

  41. Kondaveti, R., and Ganz, A., Decision support system for resource allocation in disaster management. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 3–6 Sept. 2009. pp 3425–3428. doi:10.1109/IEMBS.2009.5332498.

  42. Reddy, M. C., Paul, S. A., Abraham, J., McNeese, M., DeFlitch, C., and Yen, J., Challenges to effective crisis management: Using information and communication technologies to coordinate emergency medical services and emergency department teams. Int. J. Med. Inform. 78(4):259–269, 2009. doi:10.1016/j.ijmedinf.2008.08.003.

    Article  Google Scholar 

  43. Scheulen, J. J., Thanner, M. H., Hsu, E. B., Latimer, C. K., Brown, J., and Kelen, G. D., Electronic Mass Casualty Assessment and Planning Scenarios (EMCAPS): Development and application of computer modeling to selected national planning scenarios for high-consequence events. Ann. Emerg. Med. 53(2):226–232.e222, 2009. doi:10.1016/j.annemergmed.2008.09.014.

    Article  Google Scholar 

  44. Hupert, N., Mushlin, A. I., and Callahan, M. A., Modeling the public health response to bioterrorism: Using discrete event simulation to design antibiotic distribution centers. Med. Decis. Mak. 22(5 suppl):S17–S25, 2002. doi:10.1177/027298902237709.

    Article  Google Scholar 

  45. Su, S., and Shih, C.-L., Resource reallocation in an emergency medical service system using computer simulation. Am. J. Emerg. Med. 20(7):627–634, 2002. doi:10.1053/ajem.2002.35453.

    Article  Google Scholar 

  46. Wang, Y., Luangkesorn, K. L., and Shuman, L., Modeling emergency medical response to a mass casualty incident using agent based simulation. Socio Econ. Plan. Sci. 46(4):281–290, 2012. doi:10.1016/j.seps.2012.07.002.

    Article  Google Scholar 

  47. Cohen, I., Mandelbaum, A., and Zychlinski, N., Minimizing mortality in a mass casualty event: Fluid networks in support of modeling and staffing. IIE Transs Null Null, 2013. doi:10.1080/0740817X.2013.855846.

    Google Scholar 

  48. Rauner, M., Schaffhauser-Linzatti, M., and Niessner, H., Resource planning for ambulance services in mass casualty incidents: A DES-based policy model. Health Care Manag. Sci. 15(3):254–269, 2012. doi:10.1007/s10729-012-9198-7.

    Article  Google Scholar 

  49. Tian, Y., Zhou, T.-S., Wang, Y., Zhang, M., and Li, J.-S., Design and development of a mobile-based system for supporting emergency triage decision making. J. Med. Syst. 38(6):1–10, 2014. doi:10.1007/s10916-014-0065-6.

    Article  Google Scholar 

  50. Kearns, R. D., Hubble, M. W., Holmes, J. H., and Cairns, B. A., Disaster planning: Transportation resources and considerations for managing a burn disaster. J. Burn Care Res. 35(1):E21–E32, 2014. doi:10.1097/BCR.0b013e3182853cf7.

    Article  Google Scholar 

  51. Taylor, C. B., Curtis, K., Jan, S., and Newcombe, M., Helicopter emergency medical services (HEMS) over-triage and the financial implications for major trauma centres in NSW, Australia. BMC Emerg. Med. 13:11, 2013. doi:10.1186/1471-227x-13-11.

    Article  Google Scholar 

  52. Bonabeau, E., Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. 99(suppl 3):7280–7287, 2002. doi:10.1073/pnas.082080899.

    Article  Google Scholar 

  53. Sacco, W. J., Navin, D. M., Waddell, R. K. I., Fiedler, K. E., Long, W. B., and Buckman, R. F. J., A new resource-constrained triage method applied to victims of penetrating injury. J. Trauma Acute Care Surg. 63(2):316–325, 2007. doi:10.1097/TA.0b013e31806bf212.

    Article  Google Scholar 

  54. North, M. J., Collier, N. T., and Vos, J. R., Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1):1–25, 2006. doi:10.1145/1122012.1122013.

    Article  Google Scholar 

  55. Wilson, D. T., Hawe, G. I., Coates, G., and Crouch, R. S., A multi-objective combinatorial model of casualty processing in major incident response. Eur. J. Oper. Res. 230(3):643–655, 2013. doi:10.1016/j.ejor.2013.04.040.

    Article  MathSciNet  Google Scholar 

  56. Messelis, T., and De Causmaecker, P., An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 233(3):511–528, 2014. doi:10.1016/j.ejor.2013.08.021.

    Article  Google Scholar 

  57. Einav, S., Feigenberg, Z., Weissman, C., Zaichik, D., Caspi, G., Kotler, D., and Freund, H. R., Evacuation priorities in mass casualty terror-related events: Implications for contingency planning. Ann. Surg. 239(3):304–310, 2004. doi:10.1097/01.sla.0000114013.19114.57.

    Article  Google Scholar 

  58. Martínez-Pérez, B., de la Torre-Díez, I., López-Coronado, M., Sainz-de-Abajo, B., Robles, M., and García-Gómez, J., Mobile clinical decision support systems and applications: A literature and commercial review. J. Med. Syst. 38(1):1–10, 2014. doi:10.1007/s10916-013-0004-y.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (Grant No. 61173127), National High-tech R&D Program (No. 2013AA041201) and Zhejiang University Top Disciplinary Partnership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Song Li.

Additional information

This article is part of the Topical Collection on Mobile Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zhou, TS., Yao, Q. et al. Use of an Agent-Based Simulation Model to Evaluate a Mobile-Based System for Supporting Emergency Evacuation Decision Making. J Med Syst 38, 149 (2014). https://doi.org/10.1007/s10916-014-0149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0149-3

Keywords

Navigation