Skip to main content

Advertisement

Log in

Noninvasive Blood Glucose Sensing Using Near Infra-Red Spectroscopy and Artificial Neural Networks Based on Inverse Delayed Function Model of Neuron

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this paper, a non-invasive blood glucose sensing system is presented using near infra-red(NIR) spectroscopy. The signal from the NIR optodes is processed using artificial neural networks (ANN) to estimate the glucose level in blood. In order to obtain accurate values of the synaptic weights of the ANN, inverse delayed (ID) function model of neuron has been used. The ANN model has been implemented on field programmable gate array (FPGA). Error in estimating glucose levels using ANN based on ID function model of neuron implemented on FPGA, came out to be 1.02 mg/dl using 15 hidden neurons in the hidden layer as against 5.48 mg/dl using ANN based on conventional neuron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Heise, H. M., In: Meyers, R. A. (Ed.), Encyclopedia of analytical chemistry, vol. 1. Wiley, New York, pp. 1–27, 2000.

    Google Scholar 

  2. DCCT Group, Intensive diabetes treatment and cardiovascular disease in patients with type1 diabetes. N. Eng. J. Med. 353(25):2643–2653, 2005.

    Article  Google Scholar 

  3. Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., and Nichols, G., Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87:293–301, 2010.

    Article  Google Scholar 

  4. Whiting, D. R., Guariguata, L., Weil, C., and Shaw, J., IDF diabetes atlas: Global estimates of the prevelance of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94:311–321, 2011.

    Article  Google Scholar 

  5. Guariguata, L., Whiting, D. R., Weil, C., and Unwin, N., The international diabetes federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res. Clin. Pract. 94:322–332, 2011.

    Article  Google Scholar 

  6. Skyler, J. S., Continuous glucose monitoring: An overview of its development, Diabetes Technol. Ther. 11(sup. 1), 2009.

  7. Rabiee, A., Andreasik, V., Abu-Hamdah, R., Galiatsatos, P., Khouri, Z., Robert, B., Gibson, M. D., Andersen, D. K., and Dariush, E., Numerical and clinical accuracy of a continuous glucose monitoring system during intravenous insulin therapy in the surgical and burn intensive care units. J. Diabetes Sci. Technol. 3(4):951–959, 2009.

    Article  Google Scholar 

  8. Tani, S., Marukami, T., Matsuda, A., Shindo, A., Takemoto, K., and Inada, H., Development of a health management support system for patients with diabetes mellitus at home. J. Med. Syst. 34(3):223–228, 2010.

    Article  Google Scholar 

  9. Baig, M. M., and Gholamhosseini, H., Smart health monitoring systems: an overview of design and modeling. J. Med. Syst. 37(2):9898, 2013.

    Article  Google Scholar 

  10. Jameson, R., Lorence, D., and Lin, J., Data capture of transdermal glucose monitoring through computerized appliance-based virtual remote sensing and alert systems. J. Med. Syst. 36(4):2193–2201, 2012.

    Article  Google Scholar 

  11. Acharya, U. R., Tong, J., Subbhuraam, V. S., Chua, C. K., Ha, T. P., Ghista, D. N., Chattopadhyay, S., Ng, K. H., and Suri, J. S., Computer-based identification of type 2 diabetic subjects with and without neuropathy using dynamic planter pressure and principal component analysis. J. Med. Syst. 36(4):2483–2491, 2012.

    Article  Google Scholar 

  12. Malin,S. F., Ruchiti, T. L., Blank, T. B., Thennadil, S. U., Monfre, S. L., Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy. Clin. Chem. 45:651–658, 999.

  13. Jeon, K. J., Hwang, I. D., Hahn, S., Yoon, G., Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy. J. Biomed. Opt. (11):014022, 2006.

  14. Amerov, A. K., Chen, J., Small, G. W., and Arnold, M. A., Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy. Anal. Chem. 77(14):4587–4594, 2005.

    Article  Google Scholar 

  15. PerezGandia, C., Facchinetti, A., Sparacino, G., Cobelli, C., Gomez, E. J., Rigla, M., de Leiva, A., and Hernando, M. E., Artificial neural network algorithm for on-line glucose prediction from continuous glucose monitoring. Diabetes Technol.Ther. 12:81–88, 2010.

    Article  Google Scholar 

  16. Robertson G, Lehman D, Sandham, Hamilton, Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: A proof-of-concept pilot study. J. Electr. Comput. Eng. Article ID 681786:11, 2011.

  17. Gogou, G., Maglaveras, N., Ambrosiadou, B. V., Goulis, D., and Pappas, C., A neural network approach in diabetes management by insulin administration. J. Med. Syst. 25(2):119–131, 2001.

    Article  Google Scholar 

  18. Nakajima, K., Hayakawa, Y., Characteristics of inverse delayed model for neural computation, Proceedings of international symposium on nonlinear Theory and its Applications (202) 861–864.

  19. FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6):445–466, 1961.

    Article  Google Scholar 

  20. Hayakawa, Y., Denda, T., and Nakajima, K., Inverse function delayed model for optimization problems. Proc. KES 1:981–987, 2004.

    Google Scholar 

  21. Amerov, A. K., Chen, J. and Arnold, M. A., Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infraredspectrum. Appl. Spectrosc.

  22. Pavlyuchko, I., Vasilyev, E. V., Gribovb, L. A., Calculations of molecular ir spectra in the overtone and combination frequency regions

  23. Yamakoshi, Y., Ogawa, M., Yamakoshi, T., Tamura, T., and Yamakoshi, K., Multivariate regression and discreminant calibration models for a novel optical non-invasive blood glucose measurement method named pulse glucometry. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:126–129, 2009. doi:10.1109/IEMBS.2009.5335104.

    Google Scholar 

  24. Yamakoshi, Y., Pulse glucometry: A new approach for non-invasive blood glucose measurement using instantaneous differential near infrared spectrophotometry.

  25. Yanai, H., and Sawada, Y., Associative memory network composed of neurons with hysteresis property. Neural Netw. 3:223–228, 1990.

    Article  Google Scholar 

  26. Phee, H. K, Tung,W. L, Quek, C, A personalized approach to insulin regulation using brain-inspired neural semantic memory in diabetic glucose control. IEEE congress On Evolutionary Computation Singapore, pp.2644–2651, 2007.

  27. Nordstrom, T. Svensson, B., Using and designing massively parallel computers for artificial neural networks. J. Parallel Distrib. Process. (3): 260–285, 1998.

  28. Zhang, M., Vassiliadis, S., and Delgado-Frias, J. G., Sigmoid generators for neural computing using piecewise approximations. IEEE Trans. Comput. 45(9):1045–1049, 1996. ISSN: 0018–9340.

    Article  MATH  Google Scholar 

  29. Guccione, S. A., and Gonzalez, M. J., A neural network implementation using reconfigurable architectures. Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, 2006.

    Google Scholar 

  30. Kukar, M., Transductive reliability estimation in medical diagnosis. Artif. Intell. Med. 29:81–106, 2003.

    Article  Google Scholar 

  31. Vashist, S. K., Continuous glucose monitoring systems: A review. Diagnostics 3:385–392, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swathi Ramasahayam.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasahayam, S., Koppuravuri, S.H., Arora, L. et al. Noninvasive Blood Glucose Sensing Using Near Infra-Red Spectroscopy and Artificial Neural Networks Based on Inverse Delayed Function Model of Neuron. J Med Syst 39, 166 (2015). https://doi.org/10.1007/s10916-014-0166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0166-2

Keywords

Navigation