Skip to main content

Advertisement

Log in

Determining the Appropriate Amount of Anesthetic Gas Using DWT and EMD Combined with Neural Network

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The spectrum of EEG has been studied to predict the depth of anesthesia using variety of signal processing methods up to date. Those standard models have used the full spectrum of EEG signals together with the systolic-diastolic pressure and pulse values. As it is generally agreed today that the brain is in stable state and the delta-theta bands of the EEG spectrum remain active during anesthesia. Considering this background, two questions that motivates this paper. First, determining the amount of gas to be administered is whether feasable from the spectrum of EEG during the maintenance stage of surgical operations. Second, more specifically, the delta-theta bands of the EEG spectrum are whether sufficient alone for this aim. This research aims to answer these two questions together. Discrete wavelet transformation (DWT) and empirical mode decomposition (EMD) were applied to the EEG signals to extract delta-theta bands. The power density spectrum (PSD) values of target bands were presented as inputs to multi-layer perceptron (MLP) neural network (NN), which predicted the gas level. The present study has practical implications in terms of using less data, in an effective way and also saves time as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gurkan, G., Cebeci, B., Demiralp, T. and Akan, A., Topographic and temporal spectral analysis of EEG signals during anaesthesia. Biomedical Engineering Meeting (BIYOMUT). pp.1–4, 2010.

  2. Saraoglu, H. M., and Edin, B., E-Nose system for anesthetic dose level detection using artificial neural network. J. Med. Syst. 31(6):475–482, 2007.

    Article  Google Scholar 

  3. Mahfouf, M., Asbury, A. J., and Likens, D. A., Unconstrained and constrained generalized predictive control of depth of anesthesia during surgery. Control. Eng. Pract. 11:1501–1515, 2003.

    Article  Google Scholar 

  4. Becker, K., Thull, B., Kasmacher-Leidinger, H., Stemmer, J., Rau, G., Kalf, G., and Zimmermann, H., Design and validation of an intelligent patient monitoring and alarm system based on fuzzy logic process model. Artif. Intell. Med. 11:33–53, 1997.

    Article  Google Scholar 

  5. Vefghi, L., and Linkens, D. A., Internal representation in neural networks used for classification of patient anesthetic states and dosage. Comput. Methods Prog. Biomed. 59:75–89, 1999.

    Article  Google Scholar 

  6. Huang, J. W., Lu, Y. Y., Nayak, A., and Roy, R. J., Depth of anesthesia estimation and control. IEEE Trans. Biomed. Eng. 46:71–81, 1999.

    Article  Google Scholar 

  7. Bos, D.P.O., Duvinage, M., Oktay, O., Saa, J.D., Guruler, H. and Istanbullu, A. et al., Looking around with your brain in a virtual world. IEEE Symp. Comput. Intell. Cogn. Algorithms, Mind, Brain, pp. 1–8, 2011.

  8. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., and Dickhaus, H., Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Prog. Biomed. 108:10–19, 2011.

    Article  Google Scholar 

  9. Pachori, R. B., and Bajaj, V., Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Prog. Biomed. 104:373–381, 2011.

    Article  Google Scholar 

  10. Päivinen, N., Lammi, S., Pitkänen, A., Nissinen, J., Penttonen, M., and Grönfors, T., Epileptic seizure detection: A nonlinear viewpoint. Comput. Methods Prog. Biomed. 79:151–159, 2005.

    Article  Google Scholar 

  11. Traast, H. S., and Kalkman, C. J., Electroencephalographic characteristics of emergence from propofol/sufentanil total intervenouse anesthesia. Anesth. Analg. 81:336–371, 1995.

    Google Scholar 

  12. Franks, N. P., General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nature 9:370–386, 2008.

    Google Scholar 

  13. Al-Kadi, M. I., Reaz, M. B. I., and Ali, M. A. M., Evolution of electroencephalogram signal analysis techniques during anesthesia. Sensors Basel Switzerland 13:6605–6635, 2013.

    Article  Google Scholar 

  14. Zoughi, T., Boostani, R., and Deypir, M., A wavelet-based estimating depth of anesthesia. Eng. Appl. Artif. Intell. 25(8):1710–1722, 2012.

    Article  Google Scholar 

  15. Ferenets, R., et al., Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng. 53(6):1067–1077, 2006.

    Article  Google Scholar 

  16. Zhang, X. S., and Roy, R. J., Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans. Biomed. Eng. 48:312–323, 2001.

    Article  Google Scholar 

  17. Bruhn, J., Lehmann, L. E., Röpcke, H., Bouillon, T. W., and Hoeft, A., Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 95:30–35, 2001.

    Article  Google Scholar 

  18. Zikov, T., Bibian, S., Dumont, G. A., Huzmezan, M., and Ries, C. R., Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE Trans. Biomed. Eng. 53(4):617–632, 2006.

    Article  Google Scholar 

  19. Ferenets, R., Lipping, T., Suominen, P., Turunen, J., Puumala, P., Jantti, V., Himanen, S. L., and Huotari, A. M., Comparison of the properties of EEG spindles in sleep and propofol anesthesia. IEEE Eng. Med. Biol. Soc. 1:6356–6359, 2006.

    Google Scholar 

  20. Lalitha, V., and Eswaran, C., Automated detection of anesthetic depth levels using chaotic features with artificial neural networks. J. Med. Syst. 31(6):445–452, 2007.

    Article  Google Scholar 

  21. Tosun, M., Ferikoglu, A., Gunturkun, R., and Unal, C., Control of sevoflurane anesthetic agent via neural network using electroencephalogram signals during anesthesia. J. Med. Syst. 36:451–456, 2012.

    Article  Google Scholar 

  22. Tosun, M., and Gunturkun, R., Anesthetic gas control with neuro-fuzzy system in anesthesia. Expert Syst. Appl. 37(3):2690–2695, 2010.

    Article  Google Scholar 

  23. Gunturkun, R., Estimation of medicine amount used anesthesia by an artificial neural network. J. Med. Syst. 34(5):941–946, 2010.

    Article  Google Scholar 

  24. Sleigh, J. W., Andrzejowski, J., Steyn-Ross, A., et al., The bispectral index: A measure of depth of sleep? Anesth. Analg. 88:659–661, 1999.

    Google Scholar 

  25. Nahm, W., Stockmanns, G., Petersen, J., Gehring, H., Konecny, E., Kochs, H. D., and Kochs, E., Concept for an intelligent anaesthesia EEG monitor. Med. Inform. Internet. Med. 24(1):1–9, 1999.

    Google Scholar 

  26. Moerman, N., Bonke, B., and Oosting, J., Awarness and recall during general anesthesia: Facts and feelings. Anesthesiology 79:454–464, 1993.

    Article  Google Scholar 

  27. Temurtas, F., Tasaltin, C., Temurtas, H., Yumusak, N., and Ozturk, Z. Z., Fuzzy logic and neural network applications on the gas sensor data: concentration estimation. Lect. Notes Comput. Sci 2869:179–186, 2003.

    Article  Google Scholar 

  28. Gulbag, A., and Temurtas, F., A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro fuzzy inference systems. Sens. Actuators B 115:252–262, 2006.

    Article  Google Scholar 

  29. Yusubov, I., Gulbag, A., and Temurtas, F., A study on mixture classification using neural network. Electr. Lett. Sci. Eng. 3(1):44–49, 2007.

    Google Scholar 

  30. Adeli, H., Zhou, Z., and Dadmehr, N., Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123:69–87, 2003.

    Article  Google Scholar 

  31. Soo-young Ye, G. J., et al., Development for the evaluation index of an anesthesia depth using the bispectrum analysis. Int. J. Biol. Med. Sci. 4:67–70, 2009.

    Google Scholar 

  32. Chongsheng, L., Study of weak signal detection based on second FFT and chaotic oscillator. Nat. Sci. 3(2):59–64, 2005.

    Google Scholar 

  33. Ustundag, M., Sengur, A., Gokbulut, M., and Ata, F., Weak signal detection algorithm based on Fourier transform, 6th International Advanced Technologies Symposium (IATS’11), pp.97–100, 2011.

  34. Wu, M., and Huang, N. E., Biomedical data processing using HHT: A review, in: A. Nait-Ali (Ed.), Adv. Biosignal Process., Springer Berlin Heidelberg, pp. 335–352, 2009.

  35. Prochazka, A., Kukal, and J. Vysata, O., Wavelet transform use for feature extraction and EEG signal segments classification. 3rd Int. Symp. Commun. Control Signal Process. pp. 719–72, 2008.

  36. Sen, B., and Peker, M., Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms. Turk J Electr Eng Comput Sci 21:2092–2109, 2013.

    Article  Google Scholar 

  37. Sen, B., Peker, M., Celebi, F. V., and Cavusoglu, A., A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 38(3):1–21, 2014.

    Article  Google Scholar 

  38. Tawade, L., and Warpe, H., Detection of epilepsy disorder using discrete wavelet transforms using MATLABs. Int. J. Adv. Sci. Technol. 28:17–24, 2011.

    Google Scholar 

  39. Battista, B. M., Knapp, C., McGee, T., and Goebel, V., Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 72:H29–H37, 2007.

    Article  Google Scholar 

  40. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.

  41. Sheikhtaheri, A., Sadoughi, F., and Hashemi Dehaghi, Z., Developing and using expert systems and neural networks in medicine: A review on benefits and challenges. J. Med. Syst. 38(9):1–6, 2014.

    Article  Google Scholar 

  42. U.S. National Library of Medicine, Livertox: Clinical and Research Information on Drug-Induced Liver Injury (2014), Drug Record: Sevoflurane (Accessed 15.08.2014)

  43. Artificial Neural Network, http://en.wikipedia.org/wiki/Artificial_neural_network (Accessed: 10.11.2014)

  44. Cakir, A., and Demirel, B., A software tool for determination of breast cancer treatment methods using data mining approach. J. Med. Syst. 35:1503–1511, 2010.

    Article  Google Scholar 

  45. Güntürkün, R., Using Elman recurrent neural networks with conjugate gradient algorithm in determining the anesthetic the amount of anesthetic medicine to be applied. J. Med. Syst. 34(4):479–484, 2010.

    Article  Google Scholar 

  46. Saraoǧlu, H. M., and Şanli, S., A fuzzy logic-based decision support system on anesthetic depth control for helping anesthetists in surgeries. J. Med. Syst. 31(6):511–519, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mustafa Tosun for supplying the patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Gürüler.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşkun, M., Gürüler, H., Istanbullu, A. et al. Determining the Appropriate Amount of Anesthetic Gas Using DWT and EMD Combined with Neural Network. J Med Syst 39, 173 (2015). https://doi.org/10.1007/s10916-014-0173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0173-3

Keywords

Navigation