Skip to main content

Advertisement

Log in

Use of Oximetry as a Screening Tool for Obstructive Sleep Apnea: a Case Study in Taiwan

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) is a relatively common disease in the general population. Patients with OSA have a high risk of various comorbid medical diseases. Polysomnography (PSG) is the current gold standard for diagnosing OSA but is time consuming and expensive. This study aims to identify a sensitive screening parameter that can be used by clinicians to determine the time of referral for PSG examination in Taiwan. Eighty-seven patients, including 67 males and 20 females, were included in this study. We divided the patients into two groups: training data (n = 58) and testing group (n = 29). Pearson χ 2 test was used to perform bivariate analysis, and a decision tree was used to build a model. The decision model selected the frequency of desaturation > 4% per hour (DI4) as the indicator of OSA influence. The testing data accuracy of the C4.5 decision tree was 82.80%. External data were also used to validate the model reliability. The accuracy of the external data was 95.96%. Approximately one-third of patients with DI4 between 11 and 33 suffered from OSA. This population requires further diagnosis. Oximetry is an important and widely available screening method in Taiwan. This study proposes the need for PSG referral if DI4 is between 11 and 33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrishami, A., Khajehdehi, A., and Chung, F., A systematic review of screening questionnaires for obstructive sleep apnea. Can. J. Anaesth. 57:423–38, 2010.

    Article  Google Scholar 

  2. Bagai, K., Obstructive sleep apnea, stroke, and cardiovascular diseases. Neurologist 16:329–339, 2010.

    Article  Google Scholar 

  3. Böhning, N., Schultheiss, B., Eilers, S., Penzel, T., Böhning, W., and Schmittendorf, E., Comparability of pulse oximeters used in sleep medicine for the screening of OSA. Physiol. Meas. 31:875–88, 2010.

    Article  Google Scholar 

  4. Buchner, N. J., Quack, I., Stegbauer, J., Woznowski, M., Kaufmann, A., and Rump, L. C., Treatment of obstructive sleep apnea reduces arterial stiffness. Sleep. Breath. 16:123–133, 2011.

    Article  Google Scholar 

  5. Chao C. M., Yu Y. W., Cheng B. W., Kuo Y. L., Construction the Model on the Breast Cancer Survival Analysis Use Support Vector Machine, Logistic Regression and Decision Tree. J Med Syst 38, 2014 10.1007/s10916-014-0106-1.

  6. Chen L. F., Su C. T., Chen K. H., Wang P. C., Particle Swarm Optimization for Feature Selection with Application in Obstructive Sleep Apnea Diagnosis. Neural Comput Appl. 2011 10.1007/s00521-011-0632-4

  7. Chen, N. H., Chen, M. C., Li, H. Y., Chen, C. W., and Wang, P. C., A two-tier screening model using quality-of-life measures and pulse oximetry to screen adults with sleep-disordered breathing. Sleep. Breath. 15:447–454, 2011.

    Article  MathSciNet  Google Scholar 

  8. Chuang, L. Y., Chang, H. W., and Yang, C. H., Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1):29–38, 2008.

    Article  MATH  Google Scholar 

  9. Collop, N. A., Tracy, S. L., Kapur, V., Mehra, R., Kuhlmann, D., Fleishman, S. A., and Ojile, J. M., Obstructive sleep apnea devices for out-of-center (OOC) testing: Technology evaluation. J. Clin. Sleep Med. 7:531–48, 2011.

    Google Scholar 

  10. Cruz, I. A. C., Drummond, M., and Winck, J. C., Obstructive sleep apnea symptoms beyond sleepiness and snoring: Effects of nasal APAP therapy. Sleep. Breath. 16:361–366, 2011.

    Article  Google Scholar 

  11. De Silva, S., Abeyratne, U. R., and Hukins, C., Impact of gender on snore-based obstructive sleep apnea screening. Physiol. Meas. 33:587–601, 2012.

    Article  Google Scholar 

  12. Dudenbostel, T., and Calhoun, D. A., Resistant hypertension, obstructive sleep apnoea and aldosterone. J. Hum. Hypertens. 26:281–287, 2011.

    Article  Google Scholar 

  13. Gabbay, I. E., and Lavie, P., Age- and gender-related characteristics of obstructive sleep apnea. Sleep. Breath. 16:453–460, 2012.

    Article  Google Scholar 

  14. Gantner, D., Ge, J. Y., Li, L. H., Antic, N., Windler, S., Wong, K., Heeley, E., Huang, S. G., Cui, P., Anderson, C., Wang, J. G., and McEvoy, D., Diagnostic accuracy of a questionnaire and simple home monitoring device in detecting obstructive sleep apnoea in a Chinese population at high cardiovascular risk. Respirology 15:952–960, 2010.

    Article  Google Scholar 

  15. Gliklich, R. E., and Wang, P. C., Validation of the snore outcomes survey for patients with sleep-disordered breathing. Arch Otolaryng - Head Neck 128:819–824, 2002.

    Article  Google Scholar 

  16. Gouveris, H., Selivanova, O., Bausmer, U., Goepel, B., and Mann, W., First-night-effect on polysomnographic respiratory sleep parameters in patients with sleep-disordered breathing and upper airway pathology. Eur Arch Oto-Rhino-L 267:1449–1453, 2010.

    Article  Google Scholar 

  17. Gurubhagavatula I., Maislin G., An algorithm to stratify sleep apnea risk in a sleep disorders clinic population. Am J Resp Crit Care 1s70:371–376, 2001

  18. Hwang, S. H., Gender-wise analysis of the cephalometric factors affecting obstructive sleep apnea. Korean. J. Orthod. 41:164–173, 2011.

    Article  Google Scholar 

  19. Ip, M. S., Lam, B., Ng, M. M., Lam, W. K., Tsang, K. W., and Lam, K. S., Obstructive sleep apnea is independently associated with insulin resistance. Am. J. Respir. Crit. Care Med. 165:670–676, 2002.

    Article  Google Scholar 

  20. Jacob, S. V., Morielli, A., Mograss, M. A., Ducharme, F. M., Schloss, M. D., and Brouillette, R. T., Home testing for pediatric obstructive sleep apnea syndrome secondary to adenotonsillar hypertrophy. Pediatr. Pulm. 20:241–252, 1995.

    Article  Google Scholar 

  21. Jayaraman, G., Majid, H., Surani, S., Kao, C., and Subramanian, S., Influence of gender on continuous positive airway pressure requirements in patients with obstructive sleep apnea syndrome. Sleep. Breath. 15:781–784, 2011.

    Article  Google Scholar 

  22. John, B. D., Linda, M. S., and Brien, P. E., Predicting sleep apnea and excessive day sleepiness in the severely obese. Chest 123:1134–1141, 2003.

    Article  Google Scholar 

  23. Kapsimalis, F., and Kryger, M. H., Gender and obstructive sleep apnea syndrome. Sleep 25:497–504, 2002.

    Google Scholar 

  24. Lahsasna, A., Ainon, R. N., Zainuddin, R., and Bulgiba, A., Design of a fuzzy-based decision support system for coronary heart disease diagnosis. J. Med. Syst. 36:3293–3306, 2012.

    Article  Google Scholar 

  25. Lee D. G., Ryu K. S., Bashir M., J. Bae W., Ryu K. H., Discovering Medical Knowledge using Association Rule Mining in Young Adults with Acute Myocardial Infarction. J Med Syst 37, 2013 10.1007/s10916-012-9896-1.

  26. Lee, R. W. W., Sutherland, K., and Cistulli, P. A., Craniofacial morphology in obstructive sleep apnea. Clin. Pulm. Med. 17:189–195, 2010.

    Article  Google Scholar 

  27. Malbois, M., Giusti, V., Suter, M., Pellaton, C., Vodoz, J. F., and Heinzer, R., Oximetry alone versus portable polygraphy for sleep apnea screening before bariatric surgery. Obes. Surg. 20:326–31, 2010.

    Article  Google Scholar 

  28. Marin, J. M., Agusti, A., Villar, I., Forner, M., Nieto, D., Carrizo, S. J., Barbé, F., Vicente, E., Wei, Y., Nieto, J., and Jelic, S., Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA-J. Am. Med. ASSOC. 307:2169–2176, 2012.

    Article  Google Scholar 

  29. Patil, B. M., Joshi, R. C., Toshniwal, D., and Biradar, S., A New approach: Role of data mining in prediction of survival of burn patients. J. Med. Syst. 35:1531–1542, 2011.

    Article  Google Scholar 

  30. Polat, K., Yosunkaya, Ş., and Güneş, S., Comparison of different classifier algorithms on the automated detection of obstructive sleep apnea syndrome. J. Med. Syst. 32:243–250, 2008.

    Article  Google Scholar 

  31. Quinlan, J. R., Programs for machine learning. Morgan Kaufmann, San Francisco, 1993.

    Google Scholar 

  32. Rofail, L. M., Wong, K. K., Unger, G., Marks, G. B., and Grunstein, R. R., Comparison between a single-channel nasal airflow device and oximetry for the diagnosis of obstructive sleep apnea. Sleep 33:1106–14, 2010.

    Google Scholar 

  33. Rosenthal, L. D., and Diana, D. C., The Epworth sleepiness scale in the identification of obstructive sleep apnea. J. Nerv. Ment. Dis. 196:429–431, 2008.

    Article  Google Scholar 

  34. Ryan, P. J., Hilton, M. F., Boldy, D. A., Evans, A., Bradbury, S., Sapiano, S., Prowse, K., and Cayton, R. M., Validation of British thoracic society guidelines for the diagnosis of the sleep apnea/hypopnea syndrome: can polysomnography be avoided? Thorax 50:972–975, 1995.

    Article  Google Scholar 

  35. Saldías, P. F., Jorquera, A. J., and Díaz, P. O., Predictive value of clinical features and nocturnal oximetry for the detection of obstructive sleep apnea syndrome. Rev. Med. Chil. 138:941–50, 2010.

    Article  Google Scholar 

  36. Schafer, H., Ewig, S., Hasper, E., and Luderitz, B., Predictive diagnostic value of clinical assessment and nonlaboratory monitoring system recordings in patients with symptoms suggestive of obstructive sleep apnea syndrome. NCBI 64:194–199, 1997.

    Google Scholar 

  37. Sharma, S. K., Malik, V., Vasudev, C., Banga, A., Mohan, A., Handa, K. K., and Mukhopadhyay, S., Prediction of obstructive sleep apnea in patients presenting to a tertiary care center. Sleep. Breath. 10:147–154, 2006.

    Article  Google Scholar 

  38. Shepertycky, M. R., Banno, K., and Kryger, M. H., Differences between men and women in clinical presentation of patients diagnosed with obstructive sleep apnea syndrome. Sleep 28:309–314, 2005.

    Google Scholar 

  39. Su, C. T., Chen, K. H., Chen, L. F., Wang, P. C., and Hsiao, Y. H., Prediagnosis of obstructive sleep apnea via multiclass MTS. Comput. Math. Method. M. 2012. doi:10.1155/2012/212498.

    Google Scholar 

  40. Su, C. T., Wang, P. C., Chen, Y. C., and Chen, L. F., Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients. J. Med. Syst. 36:2387–239, 2012.

    Article  Google Scholar 

  41. Subramanian, S., Hesselbacher, S., Mattewal, A., and Surani, S., Gender and age influence the effects of slow-wave sleep on respiration in patients with obstructive sleep apnea. Sleep. Breath. 17:51–56, 2013.

    Article  Google Scholar 

  42. Tasali, E., Mokhlesi, B., and Van Cauter, E., Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest 133:496–506, 2008.

    Article  Google Scholar 

  43. Testik, M. C., Ozkaya, B. Y., Aksu, S., and Ozcebe, O. I., Discovering blood donor arrival patterns using data mining: A method to investigate service quality at blood centers. J. Med. Syst. 36:579–594, 2012.

    Article  Google Scholar 

  44. Tiihonen, P., Hukkanen, T., Tuomilehto, H., Mervaala, E., and Töyräs, J., Evaluation of a novel ambulatory device for screening of sleep apnea. Telemed. J. E. Health. 15:283–9, 2009.

    Article  Google Scholar 

  45. Walczak, B., and Massart, D. L., Rough sets theory. Chemometr. Intell. Lab. 47:1–16, 1999.

    Article  Google Scholar 

  46. Wang, P. C., Su, C. T., Chen, K. H., and Chen, N. H., The application of rough Set and Mahalanobis distance to enhance the quality of OSA diagnosis. Expert Syst. Appl. 38:7828–7836, 2011.

    Article  Google Scholar 

  47. Wright, J., Johns, R., Watt, I., Melville, A., and Sheldon, T., Health effects of obstructive sleep apnea and the effectiveness of continuous positive airway pressure: A systematic review of the research evidence. Br. Med. J. 314:851–860, 1997.

    Article  Google Scholar 

  48. Xiao, Y., Zhong, X., Huang, R., and Sun, G. Q., The evaluation of the severity of nocturnal oxygen desaturation of patients with obstructive sleep apnea hypopnea syndrome. Zhonghua. Nei. Ke. Za. Zhi. 46:458–61, 2007.

    Google Scholar 

  49. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., and Badr, S., The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328:1230–1235, 1993.

    Article  Google Scholar 

  50. Young, T., Peppard, P. E., and Gottlieb, D. J., Epidemiology of obstructive sleep apnea: A population health perspective. Am. Jnl. Resp. Crit. Care. Med. 165:1217–1239, 2002.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the comments and suggestions of the editor and the reviewers. This study is partially sponsored by the National Taiwan University of Science and Technology – Taipei Medical University Joint Research Program (TMU-NTUST-102-06 & TMU-NTUST-101-07). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

This study has no conflict of interest to any parties/agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Huang Chen.

Additional information

Shou-Hung Huang and Nai-Chia Teng contributed equally to this work.

Kung-Jeng Wang and Kun-Huang Chen contributed equally to this work.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SH., Teng, NC., Wang, KJ. et al. Use of Oximetry as a Screening Tool for Obstructive Sleep Apnea: a Case Study in Taiwan. J Med Syst 39, 29 (2015). https://doi.org/10.1007/s10916-015-0195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0195-5

Keywords

Navigation