Skip to main content
Log in

Low-Power Wireless Electronic Capsule for Long-Term Gastrointestinal Monitoring

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Combining ASIC and multiple microsensors low-power wireless electronic capsule was developed for the long-term monitoring of the entire human gastro-intestinal (GI) tract. To meet the system requirements, several low-power designs were used in the wireless electronic capsule. The capsule measured 11 × 22 mm including batteries (45mAh). The capsule system’s lifetime was 233 h, and it could meet the requirements of almost all clinical applications. A wireless electronic capsule, portable data recorder, and workstation comprised the human GI physiological parameters monitoring system. In this paper, this system was used in a clinical trial to compare colon peristaltic pressure between patients with constipation and healthy people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Zworykin, V., and Farrar, J., Radio pill. Nature 179(4566):898, 1957.

    Google Scholar 

  2. Mackay, R. S., and Jacobson, B., Endoradiosonde. Nature 179:2, 1957.

    Article  Google Scholar 

  3. Wolff, H., The radio pill. New Sci 12:419–421, 1961.

    Google Scholar 

  4. Arshak, A., Arshak, K., Lyons, G., Waldron, D., Morris, D., Korostynska, O., and Jafer, E., Review of the potential of a wireless MEMS microsystem for biomedical applications. Sensor Rev 25(4):277–286, 2005.

    Article  Google Scholar 

  5. Lee, S.-Y., Su, M., Liang, M.-C., Chen, Y.-Y., Hsieh, C.-H., Yang, C.-M., Lai, H.-Y., Lin, J.-W., and Fang, Q., A programmable implantable microstimulator SoC with wireless telemetry: Application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans Biomed Circuits Syst 5(6):511–522, 2011.

    Article  Google Scholar 

  6. Hammond, P. A., Ali, D., and Cumming, D. R., A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans Biomed Eng 52(4):687–694, 2005.

    Article  Google Scholar 

  7. Johannessen, E. A., Wang, L., Cui, L., Tang, T. B., Ahmadian, M., Astaras, A., Reid, S. W., Yam, P. S., Murray, A. F., and Flynn, B. W., Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Trans Biomed Eng 51(3):525–535, 2004.

    Article  Google Scholar 

  8. Wang, L., Johannessen, E. A., Hammond, P. A., Cui, L., Reid, S. W., Cooper, J. M., and Cumming, D. R., A programmable microsystem using system-on-chip for real-time biotelemetry. IEEE Trans Biomed Eng 52(7):1251–1260, 2005.

    Article  Google Scholar 

  9. Khan, T., Shrestha, R., and Wahid, K., A Modular and Programmable Development Platform for Capsule Endoscopy System. Journal of Medical Systems 38(6):1–12, 2014.

    Article  Google Scholar 

  10. Jiang, H., Li, F., Chen, X., Ning, Y., Zhang, X., Zhang, B., Ma, T., and Wang, Z., A SoC with 3.9 mW 3Mbps UHF transmitter and 240μW MCU for capsule endoscope with bidirectional communication. In: 2010 I.E. Asian Solid State Circuits Conference (A-SSCC), Beijing, IEEE, pp 1–4, 2010.

  11. Pan, G., et al., Bleeding Detection in Wireless Capsule Endoscopy Based on Probabilistic Neural Network. Journal of Medical Systems 35(6):1477–1484, 2011.

    Article  Google Scholar 

  12. Sainju, S., Bui, F. M., and Wahid, K. A., Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J Med Syst 38(4):1–11, 2014.

    Article  Google Scholar 

  13. Li, B., and Meng, M.-H., Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Trans Inf Technol Biomed 16(3):323–329, 2012.

    Article  Google Scholar 

  14. Sasaki, Y., Hada, R., Nakajima, H., Fukuda, S., and Munakata, A., Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: colonic luminal pH in normal subjects and patients with Crohn’s disease. Am J Gastroenterol 92(1):114–118, 1997.

    Google Scholar 

  15. Pye, G., Evans, D., Ledingham, S., and Hardcastle, J., Gastrointestinal intraluminal pH in normal subjects and those with colorectal adenoma or carcinoma. Gut 31(12):1355–1357, 1990.

    Article  Google Scholar 

  16. Kumar, D., and Wingate, D., The irritable bowel syndrome: a paroxysmal motor disorder. The Lancet 326(8462):973–977, 1985.

    Article  Google Scholar 

  17. Yan, R., Yan, G., Zhang, W., and Wang, L., Long-range scaling behaviours of human colonic pressure activities. Commun Nonlinear Sci Numer Sim 13(9):1888–1895, 2008.

    Article  Google Scholar 

  18. Van der Sijp, J., Kamm, M., Nightingale, J., Britton, K., Mather, S., Morris, G., Akkermans, L., and Lennard-Jones, J., Radioisotope determination of regional colonic transit in severe constipation: comparison with radio opaque markers. Gut 34(3):402–408, 1993.

    Article  Google Scholar 

  19. Johannessen, E. A., Wang, L., Wyse, C., Cumming, D. R., and Cooper, J. M., Biocompatibility of a lab-on-a-pill sensor in artificial gastrointestinal environments. IEEE Trans Biomed Eng 53(11):2333–2340, 2006.

    Article  Google Scholar 

  20. Duroux, P., Emde, C., Bauerfeind, P., Francis, C., Grisel, A., Thybaud, L., Arstrong, D., Depeursinge, C., and Blum, A., The ion sensitive field effect transistor (ISFET) pH electrode: a new sensor for long term ambulatory pH monitoring. Gut 32(3):240–245, 1991.

    Article  Google Scholar 

  21. Schwan, H. P., Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147, 1957.

    Article  Google Scholar 

  22. Abouei, J., Plataniotis, K. N., and Pasupathy, S., Green modulations in energy-constrained wireless sensor networks. IET Commun 5(2):240–251, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, W.-X., Yan, G.-Z., Sun, F., Jiang, P.-P., Zhang, W.-Q., and Zhang, G.-F., A non-invasive method for gastrointestinal parameter monitoring. World J Gastroentero 11(4):521–524, 2005.

    Article  Google Scholar 

  24. Chirwa, L. C., Hammond, P. A., Roy, S., and Cumming, D. R., Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz. IEEE Trans Biomed Eng 50(4):484–492, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Nature Science Foundation of China under Contract 31170968.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhao.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Yan, G., Lu, L. et al. Low-Power Wireless Electronic Capsule for Long-Term Gastrointestinal Monitoring. J Med Syst 39, 9 (2015). https://doi.org/10.1007/s10916-015-0211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0211-9

Keywords