Abstract
The clinical pathway (CP) as a novel medical management schema is beneficial for reducing the length of stay, decreasing heath care costs, standardizing clinical activities, and improving medical quality. However, the practicability of CPs is limited by the complexity and expense of adding the standard functions of electronic CPs to existing electronic medical record (EMR) systems. The purpose of this study was to design and develop an independent clinical pathway (ICP) system that is sharable with different EMR systems. An innovative knowledge base pattern was designed with separate namespaces for global knowledge, local knowledge, and real-time instances. Semantic web technologies were introduced to support knowledge sharing and intelligent reasoning. The proposed system, which was developed in a Java integrated development environment, achieved standard functions of electronic CPs without modifying existing EMR systems and integration environments in hospitals. The interaction solution between the pathway system and the EMR system simplifies the integration procedures with other hospital information systems. Five categories of transmission information were summarized to ensure the interaction process. Detailed procedures for the application of CPs to patients and managing exceptional alerts are presented by explicit data flow analysis. Compared to embedded pathway systems, independent pathway systems feature greater feasibility and practicability and are more advantageous for achieving the normalized management of standard CPs.






Similar content being viewed by others
References
Smith, K. A., Matthews, T. W., Dube, M., Spence, G., and Dort, J. C., Changing practice and improving care using a Low-risk tracheotomy clinical pathway. JAMA Otolaryngol. Head Neck Surg. 140(7):630–634, 2014. doi:10.1001/jamaoto.2014.921.
Deng, Y. M., Jiao, Y. H., Hu, R. R., Wang, Y. L., Wang, Y. J., and Zhao, X. Q., Reduction of length of stay and costs through the implementation of clinical pathways for stroke management in china. Stroke 45(5):E81–E83, 2014. doi:10.1161/strokeaha.114.004729.
Tarin, T., Feifer, A., Kimm, S., Chen, L., Sjoberg, D., Coleman, J., and Russo, P., Impact of a common clinical pathway on length of hospital stay in patients undergoing open and minimally invasive kidney surgery. J. Urol. 191(5):1225–1230, 2014. doi:10.1016/j.juro.2013.11.030.
Burgers, P., Van Lieshout, E. M. M., Verhelst, J., Dawson, I., and de Rijcke, P. A. R., Implementing a clinical pathway for hip fractures; effects on hospital length of stay and complication rates in five hundred and twenty six patients. Int. Orthop. 38(5):1045–1050, 2014. doi:10.1007/s00264-013-2218-5.
Gonenc, M., Dural, A. C., Celik, F., Akarsu, C., Kocatas, A., Kalayci, M. U., Dogan, Y., and Alis, H., Enhanced postoperative recovery pathways in emergency surgery: a randomised controlled clinical trial. Am. J. Surg. 207(6):807–814, 2014. doi:10.1016/j.amjsurg.2013.07.025.
Markar, S. R., Schmidt, H., Kunz, S., Bodnar, A., Hubka, M., and Low, D. E., Evolution of standardized clinical pathways: refining multidisciplinary care and process to improve outcomes of the surgical treatment of esophageal cancer. J. Gastrointest. Surg. 18(7):1238–1246, 2014. doi:10.1007/s11605-014-2520-6.
Chu, S., Computerised clinical pathway as process quality improvement tool. In: Patel, V. L., Rogers, R., and Haux, R. (Eds.), Proceedings of the 10th world congress on medical informatics, vol. 84. Ios Press, London, pp. 1135–1139, 2001.
China clinical pathway web. http://www.ch-cp.org.cn/.
Okada, O., Ohboshi, N., Kuroda, T., Nagase, K., and Yoshihara, H., Electronic Clinical path system based on semistructured data model using personal digital assistant for onsite access. J. Med. Syst. 29(4):379–389, 2005. doi:10.1007/s10916-005-5896-8.
Ye, Y., Jiang, Z., Diao, X., Yang, D., and Du, G., An ontology-based hierarchical semantic modeling approach to clinical pathway workflows. Comput. Biol. Med. 39(8):722–732, 2009. doi:10.1016/j.compbiomed.2009.05.005.
Okada, O., Ohboshi, N., and Yoshihara, H., Clinical path modeling in XML for a Web-based benchmark test system for medication. J. Med. Syst. 29(5):539–553, 2005. doi:10.1007/s10916-005-6110-8.
Du, G., Jiang, Z., Yao, Y., and Diao, X., Clinical pathways scheduling using hybrid genetic algorithm. J. Med. Syst. 37(3):1–17, 2013. doi:10.1007/s10916-013-9945-4.
Hurley KF, Abidi SSR (2007) Ontology Engineering to Model Clinical Pathways: Towards the Computerization and Execution of Clinical Pathways. Paper presented at the Proceedings of the 20th IEEE International Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 2007 Jun 20–27
Hindle, D., and Yazbeck, A. M., Clinical pathways in 17 european union countries: a purposive survey. Aust. Health Rev.: Publ. Aust. HospAssoc. 29(1):94–104, 2005.
Tao, H., Liu, P., Liang, J., Ke, X., Guo, S., and Qu, H., Survey and analysis of the hospitals implementing clinical pathway. Chin. Hosp. Manag. 30(2):28–30, 2010.
Isern, D., and Moreno, A., Computer-based execution of clinical guidelines: a review. Int. J. Med. Inform. 77(12):787–808, 2008. doi:10.1016/j.ijmedinf.2008.05.010.
Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R. A., Hall, R., Johnson, P. D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E. H., and Stefanelli, M., Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assn. 10(1):52–68, 2003. doi:10.1197/jamia.M1135.
Gooch, P., and Roudsari, A., Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems. J. Am. Med. Inform. Assn. 18(6):738–748, 2011. doi:10.1136/amiajnl-2010-000033.
Li, W. Z., Liu, K. C., Yang, H. Q., and Yu, C. G., Integrated clinical pathway management for medical quality improvement - based on a semiotically inspired systems architecture. Eur. J. Inform. Syst. 23(4):400–417, 2014. doi:10.1057/ejis.2013.9.
Mammen, C., Matsell, D. G., and Lemley, K. V., The importance of clinical pathways and protocols in pediatric nephrology. Pediatr. Nephrol. 29(10):1903–1914, 2014. doi:10.1007/s00467-013-2577-6.
Nussbaum, D. P., Penne, K., Speicher, P. J., Stinnett, S. S., Perez, A., White, R. R., Clary, B. M., Tyler, D. S., and Blazer, D. G., The role of clinical care pathways: an experience with distal pancreatectomy. J. Surg. Res. 190(1):64–71, 2014. doi:10.1016/j.jss.2014.02.026.
Combi, C., Gambini, M., Migliorini, S., and Posenato, R., Representing business processes through a temporal data-centric workflow modeling language: an application to the management of clinical pathways. IEEE Trans. Syst. Man Cybern. Syst. 44(9):1182–1203, 2014. doi:10.1109/tsmc.2014.2300055.
Wakamiya, S., and Yamauchi, K., What are the standard functions of electronic clinical pathways? Int. J. Med. Inform. 78(8):543–550, 2009.
Yang, H., Li, W., Liu, K., and Zhang, J., Knowledge-based clinical pathway for medical quality improvement. Inf. Syst. Front. 14(1):105–117, 2012. doi:10.1007/s10796-011-9307-z.
Wang, H. Q., Li, J. S., Zhang, Y. F., Suzuki, M., and Araki, K., Creating personalised clinical pathways by semantic interoperability with electronic health records. Artif. Intell. Med. 58(2):81–89, 2013. doi:10.1016/j.artmed.2013.02.005.
Li, J. S., Zhang, X. G., Wang, H. Q., Wang, Y., Wang, J. M., and Shao, Q. D., The meaningful use of EMR in Chinese hospitals: a case study on curbing antibiotic abuse. J. Med. Syst. 37(2):1–10, 2013. doi:10.1007/s10916-013-9937-4.
Li, J. S., Zhang, X. G., Chu, J., Suzuki, M., and Araki, K., Design and development of EMR supporting medical process management. J. Med. Syst. 36(3):1193–1203, 2012. doi:10.1007/s10916-010-9581-1.
Blumenthal, D., and Tavenner, M., The “meaningful use” regulation for electronic health records. N. Engl. J. Med. 363(6):501–504, 2010. doi:10.1056/NEJMp1006114.
Yui, B.-H., Jim, W.-T., Chen, M., Hsu, J.-M., Liu, C.-Y., and Lee, T.-T., Evaluation of computerized physician order entry system - a satisfaction survey in Taiwan. J. Med. Syst. 36(6):3817–3824, 2012. doi:10.1007/s10916-012-9854-y.
García-Castro, R., and Gómez-Pérez, A., Interoperability results for semantic web technologies using OWL as the interchange language. Web Semant. Sci. Serv. Agents World Wide Web 8(4):278–291, 2010. doi:10.1016/j.websem.2010.08.008.
Janev, V., and Vranes, S., Applicability assessment of Semantic Web technologies. Inf. Process. Manag. 47(4):507–517, 2011. doi:10.1016/j.ipm.2010.11.002.
Khan, W., Khattak, A., Hussain, M., Amin, M., Afzal, M., Nugent, C., and Lee, S., An adaptive semantic based mediation system for data interoperability among health information systems. J. Med. Syst. 38(8):1–18, 2014. doi:10.1007/s10916-014-0028-y.
Jing, X., Kay, S., Marley, T., and Hardiker, N., Integration of an OWL-DL knowledge base with an EHR prototype and providing customized information. J. Med. Syst. 38(9):1–14, 2014. doi:10.1007/s10916-014-0075-4.
Web Ontology Language (OWL). <http://www.w3.org/2004/OWL/>.
D2RQ Accessing Relational Databases as Virtual RDF Graphs. <http://d2rq.org/>.
The Protégé Ontology Editor. <http://protege.stanford.edu/>.
SPARQL Query Language for RDF. <http://www.w3.org/TR/rdf-sparql-query/>.
SNOMED CT The Global Language of Healthcare. http://www.ihtsdo.org/snomed-ct.
Wang, H. Q., Zhou, T. S., Tian, L. L., Qian, Y. M., and Li, J. S., Creating hospital-specific customized clinical pathways by applying semantic reasoning to clinical data. J. Biomed. Inform. 2014. doi:10.1016/j.jbi.2014.07.017.
Acknowledgments
This work was supported by the National Natural Science Foundation (Grant No. 61173127), National High-tech R&D Program (No. 2013AA041201, No. 2015AA020109) and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Transactional Processing Systems
Rights and permissions
About this article
Cite this article
Wang, HQ., Zhou, TS., Zhang, YF. et al. Research and Development of Semantics-based Sharable Clinical Pathway Systems. J Med Syst 39, 73 (2015). https://doi.org/10.1007/s10916-015-0257-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-015-0257-8