Skip to main content

Advertisement

Blood Smear Image Based Malaria Parasite and Infected-Erythrocyte Detection and Segmentation

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this study, an automatic malaria parasite detector is proposed to perceive the malaria-infected erythrocytes in a blood smear image and to separate parasites from the infected erythrocytes. The detector hence can verify whether a patient is infected with malaria. It could more objectively and efficiently help a doctor in diagnosing malaria. The experimental results show that the proposed method can provide impressive performance in segmenting the malaria-infected erythrocytes and the parasites from a blood smear image taken under a microscope. This paper also presents a weighted Sobel operation to compute the image gradient. The experimental results demonstrates that the weighted Sobel operation can provide more clear-cut and thinner object contours in object segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Canny, J., A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8(6):679–698, 1986.

    Article  Google Scholar 

  2. Carlone, P., Palazzo, G. S., and Pasquino, R., Pultrusion manufacturing process development: Cure optimization by hybrid computational methods. Comput. Math. Appl. 53:1464–1471, 2007.

    Article  Google Scholar 

  3. Chan, Y. K., Tsai, M. H., Huang, D. C., and Zheng, Z. H., Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinf 11(558):1–18, 2010.

    Google Scholar 

  4. Chiodini, P. L., Moody, A. H., and Manser, D. W., Atlas of medical helminthology and protozoology, 4th edition. Churchill Livingstone, Edinburgh, New York, 2001.

    Google Scholar 

  5. Cross, C., Malaria Control Measure. (http://malaria.wellcome.ac.uk/doc_WTD023987.html), November 2004.

  6. Gelasca, E. D., Byun, J. B., Obara, and Manjunath, B. S., Evaluation and benchmark for biological image segmentation. 15th IEEE International Conference on Image Processing (ICIP 2008), San Diego, CA, USA, pp. 1816–1819, 2008.

  7. Gonzalez, R. C., and Woods, R. E., Digital image processing, 3rd edition. Prentice Hall, Upper Saddle River, N.J, 2008.

    Google Scholar 

  8. Haupt, R. L., and Haupt, S. E., Practical genetic algorithms, vol. 2. John Wiley, Hoboken, N.J., 2004.

    Google Scholar 

  9. Kumar, S., Ong, S. H., Ranganath, S., Ong, T. C., and Chew, F. T., A rule-based approach for robust clump splitting. Pattern Recogn. 39(6):1088–1098, 2006.

    Article  Google Scholar 

  10. Le, M. T., Bretschneider, T. R., Kuss, C., and Preiser P. R., A novel semi-automatic image processing approach to determine plasmodium falciparum parasitemia in giemsa-stained thin blood smears. BMC Cell Biol. 9(15), 2008.

  11. Moody, A. H., and Chiodini, P. L., Methods for the detection of blood parasites. Clin. Lab. Haematol. 22(4):189–201, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Nasir, A. S. A., Mashor, M. Y., and Mohamed, Z., Colour image segmentation approach for detection of malaria parasites using various colour models and k-means clustering. WSEAS Trans. Biol. Biomed. 1(10):41–55, 2013.

    Google Scholar 

  13. Nixon, M. S., and Aguado, A. S., Feature extraction and image processing, 1st edition. Newnes, Oxford, 2002.

    Google Scholar 

  14. Otsu, N., A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1):62–66, 1979.

    Article  Google Scholar 

  15. Payne, D., Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull. World Health Organ. 66(5):621–626, 1988.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Perez-Jorge, E. V., and Herchline, T., Malaria: eMedicine Infectious Diseases. (http://emedicine.medscape.com/article/221134-overview).

  17. Ross, N. E., Pritchard, C. J., Rubin, D. M., and Dusé, A. G., Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med. Biol. Eng. Comput. 44(5):427–436, 2006.

    Article  PubMed  Google Scholar 

  18. Ruberto, C. D., Dempster, A., Khan, S., and Jarra, B., Analysis of infected blood cell images using morphological operators. Image Vis. Comput. 20(2):133–146, 2002.

    Article  Google Scholar 

  19. Sezgin, M., and Sankur, B., Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1):146–165, 2004.

    Article  Google Scholar 

  20. Shi, Y. Q., and Sun, H., Image and video compression for multimedia engineering fundamentals, algorithms, standards. 2nd ed. CRC Press, Taylor & Francis Group, 2008.

  21. Sio, S. W. S., Sun, W., Kumar, S., Bin, W. Z., Tan, S. S., Ong, S. H., Kikuchi, H., Oshima, Y., and Tan, K. S. W., MalariaCount: An image analysis-based program for the accurate determination of parasitemia. J. Microbiol. Methods 68(1):11–18, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Trampuz, A., Jereb, M., Muzlovic, I., and Prabhu, R. M., Clinical review: Severe malaria. Crit. Care 7:315–323, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Tsutsumi, Y., Case 206, Malaria Falciparum. (http://www.fujita-hu.ac.jp/~tsutsumi/case/case206.htm).

  24. Vallejo, A. F., Chaparro, P. E., Benavides, Y., Álvarez, Á., Quintero, J. P., Padilla, J., Arévalo-Herrera, M., and Herrera, S., High prevalence of sub-microscopic infections in Colombia. Malar. J. 14(201), May 2015, doi:10.1186/s12936-015-0711-6.

  25. World Health Organization, World Malaria Report 2014, Geneva: World Health Organization, 2014.

    Google Scholar 

  26. Zuiderveld, K., Contrast limited adaptive histogram equalization. In: Heckbert, P. (Ed.) Graphics gems IV, Academic Press, pp. 474–485, 1994.

  27. Zhou, Z., Wu, S., Chang, K. J., Chen, W. R., Chen, Y. S., Kuo, W. H., Lin, C. C., and Tsui, P. H., Classification of benign and malignant breast tumors in ultrasound images with posterior acoustic shadowing using half-contour features. J. Med. Biol. Eng. 35:178–187, 2015.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Authors’ Contributions

MHT and YKC conceived the study. SSY designed the approach and performed the computational analysis with CCJ. MHT and YKC supervised the work and tested the program. MHT, SSY, YKC and CCJ wrote the manuscript. MHT prepared the samples and collected the data. MHT and YKC contributed analyzing experimental studies. All authors read and approved the final manuscript. YKC and SSY contributed equally and are the correspondents as well as listed in alphabetical order.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shyr-Shen Yu or Yung-Kuan Chan.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, MH., Yu, SS., Chan, YK. et al. Blood Smear Image Based Malaria Parasite and Infected-Erythrocyte Detection and Segmentation. J Med Syst 39, 118 (2015). https://doi.org/10.1007/s10916-015-0280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0280-9

Keywords