Skip to main content

Advertisement

Log in

Determination of Fatigue Following Maximal Loaded Treadmill Exercise by Using Wavelet Packet Transform Analysis and MLPNN from MMG-EMG Data Combinations

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The muscle fatigue can be expressed as decrease in maximal voluntary force generating capacity of the neuromuscular system as a result of peripheral changes at the level of the muscle, and also failure of the central nervous system to drive the motoneurons adequately. In this study, a muscle fatigue detection method based on frequency spectrum of electromyogram (EMG) and mechanomyogram (MMG) has been presented. The EMG and MMG data were obtained from 31 healthy, recreationally active men at the onset, and following exercise. All participants were performed a maximally exercise session in a motor-driven treadmill by using standard Bruce protocol which is the most widely used test to predict functional capacity. The method used in the present study consists of pre-processing, determination of the energy value based on wavelet packet transform, and classification phases. The results of the study demonstrated that changes in the MMG 176–234 Hz and EMG 254–313 Hz bands are critical to determine for muscle fatigue occurred following maximally exercise session. In conclusion, our study revealed that an algorithm with EMG and MMG combination based on frequency spectrum is more effective for the detection of muscle fatigue than EMG or MMG alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Comi, G., Leocani, L., Rossi, P., and Colombo, B., Physiopathology and treatment of fatigue in multiple sclerosis. J. Neurol. 248:174–179, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Latash, M. L., Yee, M. J., Orpett, C., Slingo, A., and Nicholas, J. J., Combining electrical muscle stimulation with voluntary contraction for studying muscle fatique. Arch. Phys. Med. Rehabil. 75:29–35, 1994.

    CAS  PubMed  Google Scholar 

  3. Chaudhuri, A., and Behan, P. O., Fatigue and basal ganglia. J. Neurol. Sci. 179:34–42, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhuri, A., Behan, P. O.; “Fatigue in neurological disorders”. Lancet., 2004, 978–988.

  5. Mathur, S., Eng, J. J., and MacIntyre, D. L., Reliability of surface EMG during sustained contractions of the quadriceps. J. Electromyogr. Kinesiol. 15:102–110, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Strimpakos, N., Georgios, G., Eleni, K., Vasilios, K., and Jacqueline, O., Issues in relation to the repeatability of and correlation between EMG and Borg scale assessments of neck muscle fatigue. J. Electromyogr. Kinesiol. 15(5):452–465, 2005.

    Article  PubMed  Google Scholar 

  7. Ravier, P., Buttelli, O., Jennane, R., and Couratier, P., An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions. J. Electromyogr. Kinesiol. 15:210–221, 2005.

    Article  PubMed  Google Scholar 

  8. De Luca, C. J., The use of surface electromyography in Biomech. J. Appl. Biomech. 13:135–163, 1997.

    Google Scholar 

  9. Lindstrom, L., Kadefors, R., and Petersen, I., An electromyographic index for localized muscle fatigue. J. Appl. Physiol. 43:750–754, 1977.

    CAS  PubMed  Google Scholar 

  10. Marras, W., Industrial electromyography (EMG). Int. J. Ind. Ergon. 6:89–74, 1990.

    Article  Google Scholar 

  11. Hagberg, M., Work load and fatigue in repetitive arm elevations. Ergonomics 24:543–555, 1981.

    Article  CAS  PubMed  Google Scholar 

  12. Petrofsky, J. S., Glaser, R. M., Phillips, C. A., Lind, A. R., and Williams, C., Evaluation of amplitude and frequency components of the surface EMG as an index of muscle fatigue. Ergonomics 25:213–223, 1982.

    Article  CAS  PubMed  Google Scholar 

  13. Güler, N. F., and Koçer, S., Classification of EMG signals using PCA and FFT. J. Med. Syst. 29(3):241–250, 2005.

    Article  PubMed  Google Scholar 

  14. Sakurai, T., Toda, M., Sakurazawa, S., Akita, J., Kondo, K., Nakamura, Y. “Detection of muscle fatigue by the surface electromyogram and its application”. 9th IEEE/ACIS international conference on computer and information science, 2010.

  15. Soo, Y., Sugi, M., Nishino, M., Yokoi, H., Arai, T., Kato, R., Nakamura, T., Ota, J. “Quantative estimation of muscle fatigue using surface electromyography during static muscle contraction”. 31st annual international conference of the IEEE EMBS, 2009.

  16. Oka, H. “Estimation of muscle fatigue by using EMG and muscle stiffness”. 18th annual international conference of the IEEE engineering in medicine and biology society, Amsterdam 1996.

  17. Jubeau, M., Zory, R., Gondin, J., Martin, A., and Maffiuletti, N. A., Effect of electrostimulation training-detraining on neuromuscular fatigue mechanisms. Neurosci. Lett. 424(1):41–46, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Oliver, J., Armstrong, N., and Williams, C., Changes in jump performance and muscle activity following soccer-specific exercise”. J. Sports Sci. 13:1–8, 2007.

    Google Scholar 

  19. Al-Mulla, M. R., and Sepulveda, F., Super wavelet for sEMG signal extraction during dynamic fatiguing contractions. J. Med. Syst. 39(1):1–9, 2015.

    Article  Google Scholar 

  20. Subasi, A., and Kiymik, M. K., Muscle fatigue detection in EMG using time–frequency methods, ICA and neural networks. J. Med. Syst. 34(4):777–785, 2010.

    Article  PubMed  Google Scholar 

  21. Orizio, C., Gobbo, M., Diemont, B., Esposito, F., and Veicsteinas, A., The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. historical basis and novel evidence. Eur. J. Appl. Physiol. 90(3–4):326–36, 2003.

    Article  PubMed  Google Scholar 

  22. Yang, Z.F., Kumar, D. K., Arjunan, S.P. “Mechanomyogram for identifying muscle activity and fatigue”. 31st annual international conference of the IEEE EMBS Minneapolis, Minnesota, USA, September 2–6, 2009.

  23. Shinohara, M., Kouzaki, M., Yoshihisa, T., and Fukunaga, T., Mechanomyography of the human quadriceps muscle during incremental cycle ergometry. Eur. J. Appl. Physiol. Occup. Physiol. 76:314–319, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Madeleine, P., Jørgensen, L. V., Søgaard, K., Arendt-Nielsen, L., and Sjøgaard, G., Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode. Eur. J. Appl. Physiol. 87:28–37, 2002.

    Article  PubMed  Google Scholar 

  25. Kimura, T., Fujibayashi, M., Tanaka, S., and Moritani, T., Mechanomyographic responses in quadriceps muscles during fatigue by continuous cycle exercise. Eur. J. Appl. Physiol. 104:651–656, 2008.

    Article  PubMed  Google Scholar 

  26. Itoh, Y., Akataki, K., Mita, K., Watakabe, M., and Itoh, K., Time-frequency analysis of mechanomyogram during sustained contractions with muscle fatigue. Syst. Comput. Jpn. 35:26–36, 2004.

    Article  Google Scholar 

  27. Orizio, C., Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Crit. Rev. Biomed. Eng. 21:201–243, 1993.

    CAS  PubMed  Google Scholar 

  28. Perry-Rana, S. R., Housh, T. J., Johnson, G. O., Bull, A. J., Berning, J. M., and Cramer, J. T., MMG and EMG responses during fatiguing isokinetic muscle contractions at different velocities. Muscle Nerve 26:367–373, 2002.

    Article  PubMed  Google Scholar 

  29. Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., and Malek, M. H., Mechanomyographic and electromyographic amplitude and frequency responses during fatiguing isokinetic muscle actions of the biceps brachii. Electromyograph. Clin. Neurophysiol. 44:431–441, 2004.

    CAS  Google Scholar 

  30. Faller, L., Neto, G. N. N., Button, V. L. S. N., and Nohama, P., Muscle fatigue assessment by mechanomyography during application of NMES protocol. Rev. Brasil. Fisioterapia/Braz. J. Phys. Ther. 13:422–429, 2009.

    Article  Google Scholar 

  31. Beck, W. T., Tscharner, V. V., Housh, J. T., Cramer, T. J., Weir, P. J., Malek, H. M., and Mielke, M., Time/frequency events of surface mechanomyographic signals resolved by nonlinearly scaled wavelets. Biomed. Sign. Process. Contrl. 3:255–266, 2008.

    Article  Google Scholar 

  32. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J. M., Wavelet Toolbox for use with MATLAB, User’s Guide, The Mathworks Inc., 1997–2002.

  33. Bilgin, S., Çolak, O. H., Köklükaya, E., and Arı, N., Efficient solution for frequency band decomposition problem using wavelet packet in HRV. Digit. Sign. Process. 18(6):892–899, 2008.

    Article  Google Scholar 

  34. Bilgin, S., Çolak, Ö. H., Polat, O., and Köklükaya, E., “Determination of a new VLF BAND in HRV for ventricular tachyarrhytmia patients”. J. Med. Syst. 34(2):155–160, 2010.

    Article  PubMed  Google Scholar 

  35. Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., and Malek, M. H., Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii. J. Electromyogr. Kinesiol. 15(2):190–199, 2005.

    Article  PubMed  Google Scholar 

  36. Ebersole, K. T., O’Connor, K. M., and Wier, A. P., Mechanomyographic and electromyographic responses to repeated concentric muscle actions of the quadriceps femoris. J. Electromyogr. Kinesiol. 16(2):149–57, 2006.

    Article  PubMed  Google Scholar 

  37. Ryan, E. D., Cramer, J. T., Egan, A. D., Hartman, M. J., and Herda, T. J., Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms. J. Electromyogr. Kinesiol. 18(1):54–67, 2008.

    Article  PubMed  Google Scholar 

  38. Abbiss, C. R., and Laursen, P. B., Models to explain fatigue during prolonged endurance cycling. Sports Med. 35(10):865–898, 2005.

    Article  PubMed  Google Scholar 

  39. Pringle, J. S., and Jones, A. M., Maximal lactate steady state, critical power and EMG during cycling. Eur. J. Appl. Physiol. 88(3):214–226, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Bruce, R. A., Methods of exercise testing: step test, bicycle, treadmill, isometrics. Am. J. Cardiol. 33(6):715–720, 1974.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research has been supported with project number: 2014.01.0102.001 by the Research Project Department of Akdeniz University, Antalya, Turkey. This study was approved as ethically by Akdeniz University, Faculty of Medicine, Scientific Research Assessing Authority with date/number:21.12.2010/220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer H. Çolak.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, G., Hindistan, İ.E., Özkaya, Y.G. et al. Determination of Fatigue Following Maximal Loaded Treadmill Exercise by Using Wavelet Packet Transform Analysis and MLPNN from MMG-EMG Data Combinations. J Med Syst 39, 108 (2015). https://doi.org/10.1007/s10916-015-0304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0304-5

Keywords

Navigation