Abstract
Tuberculosis (TB) is an infectious disease caused by the bacteria Mycobacterium tuberculosis. It primarily affects the lungs, but it can also affect other parts of the body. TB remains one of the leading causes of death in developing countries, and its recent resurgences in both developed and developing countries warrant global attention. The number of deaths due to TB is very high (as per the WHO report, 1.5 million died in 2013), although most are preventable if diagnosed early and treated. There are many tools for TB detection, but the most widely used one is sputum smear microscopy. It is done manually and is often time consuming; a laboratory technician is expected to spend at least 15 min per slide, limiting the number of slides that can be screened. Many countries, including India, have a dearth of properly trained technicians, and they often fail to detect TB cases due to the stress of a heavy workload. Automatic methods are generally considered as a solution to this problem. Attempts have been made to develop automatic approaches to identify TB bacteria from microscopic sputum smear images. In this paper, we provide a review of automatic methods based on image processing techniques published between 1998 and 2014. The review shows that the accuracy of algorithms for the automatic detection of TB increased significantly over the years and gladly acknowledges that commercial products based on published works also started appearing in the market. This review could be useful to researchers and practitioners working in the field of TB automation, providing a comprehensive and accessible overview of methods of this field of research.





Similar content being viewed by others
References
Ayas, S., and Ekinci, M., Random forest-based tuberculosis bacteria classification in images of ZN-stained sputum smear samples. SIViP. 8(1):49–61, 2014. doi:10.1007/s11760-014-0708-6.
Chang, I.C., Hwang, H.G., Hung, W.F., and Li, Y.C., Physicians’ acceptance of pharmacokinetics-based clinical decision support systems. Expert Syst. Appl. 33(2):296–303, 2007. doi:10.1016/j.eswa.2006.05.001.
Chang, J., Arbeláez, P., Switz, N., Reber, C., Tapley, A., Davis, J.L., Cattamanchi, A., Fletcher, D., and Malik, J., Automated tuberculosis diagnosis using fluorescence images from a mobile microscope. In Proc. of Medical Image Computing and Computer-Assisted Intervention – MICCAI. 7512:345–352, 2012. doi:10.1007/978-3-642-33454-2_43.
Costa, M. G., Costa Filho, C. F. F., Sena, J. F., Salem, J., and Lima, M. O., Automatic identification of Mycobacterium tuberculosis with conventional light microscopy. In Proc. of 30th Annual International IEEE Eng Med Biol Soc. Vancouver, Canada, pp. 382–385, 2008. doi:10.1109/IEMBS.2008.4649170.
Costa, M.G., Costa Filho, C.F.F., Junior, K.A., Levy, P.C., Xavier, C.M., and Fujimoto, L.B., A sputum smear microscopy image database for automatic bacilli detection in conventional microscopy. In Proc. of 36th Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC):2841–2844, 2014. doi:10.1109/EMBC.2014.6944215.
Elveren, E., and Yumuşak, N., Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 35:329–332, 2011. doi:10.1007/s10916-009-9369-3.
Er, O., Temurtas, F., and Tanrıkulu, A.C., Tuberculosis disease diagnosis using artificial neural networks. J. Med. Syst. 34:299–302, 2010. doi:10.1007/s10916-008-9241-x.
Costa Filho, C. F. F., Costa, M. G. F., and Júnior, A. K., Autofocus functions for tuberculosis diagnosis with conventional sputum smear microscopy. In: Méndez-Vilas, A., (Ed), Proc. of Current Microscopy Contributions to Advances in Science and Technology. Formatex Research Center, pp. 13–20, 2012.
Costa Filho, C. F. F., and Costa, M. G. F., Sputum Smear Microscopy for Tuberculosis: Evaluation of Autofocus Functions and Automatic Identification of Tuberculosis Mycobacterium. Understanding Tuberculosis - Global Experiences and Innovative Approaches to the Diagnosis, Dr. Pere-Joan Cardona (Ed.), ISBN: 978–953-307-938-7, InTech, pp. 277–292,2012.
CostaFilho, C.F.F., Levy, P.C., Xavier, C.M., Costa M.G.F., Fujimoto, L.B.M., and Salem, J., Mycobacterium tuberculosis Recognition with Conventional Microscopy. In Proc. IEEE Eng Med Biol Soc. 6263–8, 2012. doi:10.1109/EMBC.2012.6347426.
Forero, M.G., Cristóbal, G., and Alvarez-Borrego, J., Automatic identification techniques of tuberculosis bacteria. In Proc. of Applications of Digital Image Processing XXVI (SPIE). 5203:71–81, 2003. doi:10.1117/12.506800.
Forero, M.G., Sroubek, F., and Cristóbal, G., Identification of tuberculosis bacteria based on shape and color. Real-Time Imaging. 10(4):251–262, 2004. doi:10.1016/j.rti.2004.05.007.
Forero, M.G., Cristóbal, G., and Desco, M., Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. J. Microsc. 223(2):120–132, 2006. doi:10.1111/j.1365-2818.2006.01610.x.
Forero-Vargas, M.G., Sierra-Ballen, E.L., Alvarez-Borrego, J., Pech-Pacheco, J.L., Cristobal-Perez, G., Alcala, L., and Desco, M., Automatic sputum color image segmentation for tuberculosis diagnosis. In Proc. of SPIE Algorithms and Systems for Optical Information Processing V. 4471:251–261, 2001. doi:10.1117/12.449343.
Forero-Vargas, M., Sroubek, F., Alvarez-Borrego, J., Malpica, N., Cristóbal, G., Alcalá, L., Alcala, L., Desco, M., and Cohen, L., Segmentation, autofocusing and signature extraction of tuberculosis sputum images. In Proc. of SPIE Photonic Devices and Algorithms for Computing IV. 4788:171–182, 2002. doi:10.1117/12.451665.
Global tuberculosis report 2014. Retrieved from: http://www.who.int/tb/publications/global_report/en/. Last Accessed on 16 April 2015.
Information about Tuberculosis (1985). Retrieved from: http://www.tbfacts.org. Last Accessed on 23 March 2015.
de Jager, K., Fickling, S., Krishnan, S., Jabbari, M., Learmonth, G.W., and Douglas, T.S., Automated fluorescence microscope for tuberculosis detection. Journal of Medical Devices. 8(3):0309431–0309432, 2014. doi:10.1115/1.4027111.
Junior, A. K., Costa, M. G., Costa Filho, C. F. F., Fujimoto, L. B. M., Salem, J., Evaluation of autofocus functions of conventional sputum smear microscopy for tuberculosis. In Proc. of Annual International Conference of the IEEE Eng Med Biol Soc. Argentina, 3041–3044, 2010. doi:10.1109/IEMBS.2010.5626143.
Khutlang, R., Krishnan, S., Dendere, R., Whitelaw, A., Veropoulos, K., Learmonth, G., and Douglas, T.S., Classification of Mycobacterium tuberculosis in Images of ZNStained Sputum Smears. IEEE Trans InfTechnol Biomed. 14(4):949–957, 2010.
Khutlang, R., Krishnan, S., Whitelaw, A., and Douglas, T.S., Automated detection of tuberculosis in ziehl-neelsen stained sputum smears using two one-class classifiers. J. Microsc. 237(1):96–102, 2010.
Lewis, J. J., Chihota, V. N., Meulen, M., Fourie, P. B., Fielding, K. L., Grant, A. D., Dorman, S. E., Churchyard, G. J., “Proof-Of-Concept” Evaluation of an Automated Sputum Smear Microscopy System for Tuberculosis Diagnosis. PLoS One, 7:11, 2012. doi:10.1371/journal.pone.0050173.
Makkapati, V., Agrawal, R., and Acharya, R., Segmentation and classification of tuberculosis bacilli from ZN-stained sputum smear images. In proc. Of IEEE International Conference on Automation Science and Engineering (CASE), Bangalore, 217–220, 2009. doi:10.1109/COASE.2009.5234173.
Mateos-Pérez, J.M., Redondo, R., Nava, R., Valdiviezo, J.C., Cristóbal, G., Escalante-Ramérez, B., Ruiz-Serrano, M.J., Pascau, J., and Desco, M., Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis. Cytometry Part A. 81(3):213–221, 2012. doi:10.1002/cyto.a.22020.
Nayak, R., Shenoy, V. P., and Galigekere, R. R., A new algorithm for automatic assessment of the degree of TB-infection using images of ZN-stained sputum smear. In Proc. of International Conference on Systems in Medicine and Biology (ICSMB), Kharagpur, 294–299, 2010. doi:10.1109/ICSMB.2010.5735390.
Osibote, O. A., Dendere, R., Krishnan, S., and Douglas, T. S., Automated focusing in bright-field microscopy for tuberculosis detection. J. Microsc. 240(2): 155–163, 2010. doi:10.1111/j.1365-2818.2010.03389.x.
Osman, M. K., Mashor, M. Y., Jaafar, H., Raof, R A A., and Harun, N., Performance comparison between RGB and HSI linear stretching for tuberculosis bacilli detection in Ziehl-Neelsen tissue slide images. In Proc. of IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, 357–362, 2009. doi:10.1109/ICSIPA.2009.5478677.
Osman, M. K., Mashor, M. Y., and Jaafar, H., Detection of Mycobacterium tuberculosis in Ziehl-Neelsen stained tissue images using Zernike moments and hybrid multilayered perceptron network. In Proc. of IEEE International Conference on Systems Man and Cybernetics (SMC), Istanbul, 4049–4055, 2010. doi:10.1109/ICSMC.2010.5642191.
Osman, M.K., Mashor, M. Y., and Jaafar, H., Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network. In proc. of 10th International Conference on Information Sciences Signal Processing and their Applications (ISSPA), Kuala Lumpur, 365–368, 2010. doi:10.1109/ISSPA.2010.5605524.
Osman, M.K., Ahmad, F., Saad, Z., Mashor, M. Y., and Jaafar, H., A genetic algorithm-neural network approach for Mycobacterium tuberculosis detection in Ziehl-Neelsen stained tissue slide images. In Proc. of 10th International Conference on Intelligent Systems Design and Applications (ISDA) 1229–1234, 2010. doi:10.1109/ISDA.2010.5687018.
Osman, M.K., Mashor, M., and Jaafar, H., Combining Thresholding and Clustering Techniques for Mycobacterium tuberculosis Segmentation in Tissue Sections. Aust. J. Basic Appl. Sci. 5(12):1270–1279 ISSN 1991-8178, 2011.
Osman, M. K., Noor, M., Mashor, M. Y., and Jaafar, H., Compact single hidden layer feed forward network for Mycobacterium tuberculosis detection. In Proc. of IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 432–436, 2011.doi:10.1109/ICCSCE.2011.6190565.
Osman, M. K., Mashor, M. Y., and Jaafar, H., Tuberculosis bacilli detection in Ziehl-Neelsen- stained tissue using affine moment invariants and Extreme Learning Machine. In Proc. of IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), 232–236, 2011.doi:10.1109/CSPA.2011.5759878.
Pertuz, S., Puig, D., and Garcia, M., A., analysis of focus measure operators for shape-from-focus. Pattern Recogn. 46(5):1415–1432, 2013. doi:10.1016/j.patcog.2012.11.011.
Priya, E., and Srinivasan, S., Automated decision support system for tuberculosis digital images using evolutionary learning machines. European Journal for Biomedical Informatics. 9(2):3–8, 2013.
Raof, R. A. A., Mashor, M. Y., Ahmad, R. B., and Noor, S. S. M., Image Segmentation of Ziehl-Neelsen Sputum Slide Images for Tubercle Bacilli Detection. In: Dr. Pei-Gee Ho (Ed.), Image Segmentation, ISBN: 978-953-307-228-9, InTech. 365–378, 2011.
Rulaningtyas, R., Suksmono, A. B., Mengko, T. L. R., and Saptawati, P., Color segmentation using bayesian method of tuberculosis bacteria images in ziehl-neelsen sputum smear. In Proc. of WiSE Health, Indonesia, 2012.
Russell, M. J., and Douglas, T. S., Evaluation of autofocus algorithms for tuberculosis microscopy. In Proc. of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBS), 3489–3492, 2007. doi:10.1109/IEMBS.2007.4353082.
Sadaphal, P., Rao, J., Comstock, G.W., and Beg, M.F., Image processing techniques for identifying Mycobacterium tuberculosis in ziehl-neelsen stains. International Journal of Tuberculosis and Lung Disease. 12(5):579–582, 2008.
Santiago-Mozos, R., Pérez-Cruz, F., Madden, M.G., and Artés-Rodríguez, A., An Automated Screening System for Tuberculosis. IEEE journal of Biomedical and Health informatics. 18(3):855–862, 2014. doi:10.1109/JBHI.2013.2282874.
Sotaquirá, M., Rueda, L., and Narvaez, R., Detection and quantification of bacilli and clusters present in sputum smear samples: a novel algorithm for pulmonary tuberculosis diagnosis. In Proc.of International Conference on Digital Image Processing, Bangkok, 117–121, 2009.doi:10.1109/ICDIP.2009.59.
Steingart, K.R., Henry, M., Vivienne, N., Hopewell, P.C., Ramsay, A., Cunningham, J., Urbanczik, R., Perkins, M., Aziz, M.A., and Pai, M., Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis. 6(9):570–581, 2006. doi:10.1016/s1473-3099(06)70578-3.
Tapley, A., Switz, N., Reber, C., Davis, J.L., Miller, C., Matovu, J.B., Worodria, W., Huang, L., Fletcher, D.A., and Cattamanchi, A., Mobile digital fluorescence microscopy for diagnosis of tuberculosis. J. Clin. Microbiol. 51(6):1774–1778, 2013. doi:10.1128/JCM.03432-12.
Tuberculosis Diagnostics Technology and Market Landscape 3RD EDITION. Retrieved from: http://unitaid.org/en/rss-unitaid/1392-tuberculosis-diagnostics-technology-and-market-landscape-3rd-edition. Last Accessed on 16 June 2015.
Uplekar, M., Weil, D., Lonnroth, K., Jaramillo, E., Lienhardt, C., Dias, H.M., Falzon, D., Floyd, K., Gargioni, G., Getahun, H., Gilpin, C., Glaziou, P., Grzemska, M., Mirzayev, F., Nakatani, H., and Raviglione, M., WHO’s new End TB Strategy. Lancet. 385(9979):1799–1801, 2015. doi:10.1016/S0140-6736(15)60570-0.
Veropoulos, K., Campbell, C., and Learmonth, G., Image processing and neural computing used in the diagnosis of tuberculosis. In Proc. of IEE Colloquium on Intelligent Methods in Healthcare and Medical Applications (Digest No. 1998/514), York, 8/1–8/4, 1998. doi:10.1049/ic:19981039.
Veropoulos, K., Campbell, C., Learmonth, G., Knight, B., and Simpson, J., The Automated Identification of Tubercle Bacilli using Image Processing and Neural Computing Techniques. In Proc. of the 8th International Conference on Artificial Neural Networks, Skövde, 797–802, 1998. doi:10.1007/978-1-4471-1599-1_123.
Veropoulos, K., Learmonth, G., Campbell, C., Knight, B., and Simpson, J., Automated identification of tubercle bacilli in sputum: a preliminary investigation. Anal. Quant. Cytol. Histol. 21(4):277–282, 1999.
Zhai, Y., Liu, Y., Zhou, D., and Liu, S., Automatic Identification of Mycobacterium tuberculosis from ZN-stained sputum smear: Algorithm and system design. In Proc. of IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, 41–46, 2010. doi:10.1109/ROBIO.2010.5723300.
Acknowledgments
The authors would like to thank Dr. Marly Costa and Center for Research and Development in Electronic and Information Technology (CETELI), Federal University of Amazonas – UFAM, Brazil, for providing the TB image database for our research.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Education & Training
Rights and permissions
About this article
Cite this article
Panicker, R.O., Soman, B., Saini, G. et al. A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images. J Med Syst 40, 17 (2016). https://doi.org/10.1007/s10916-015-0388-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-015-0388-y