Skip to main content

Advertisement

Log in

Assessing the Queuing Process Using Data Envelopment Analysis: an Application in Health Centres

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. ww. DEAsoftware.co.uk

References

  1. Adeleke, R. A., Ogunwale, O. D., and Halid, O. Y., Application of queuing theory to waiting time of out-patients in hospitals. Pac. J. Sci. Technol. 10(2):270–274, 2009.

    Google Scholar 

  2. Ramanathan, R., Operations assessment of hospitals in the Sultanate of Oman. Int. J. Prod. Oper. Manag. 25(1):39–54, 2005.

    Article  Google Scholar 

  3. Matta, M. E., and Patterson, S. S., Evaluating multiple performance measures across several dimensions at a multi-facility outpatient center. Healthc. Manag. Sci. 10(2):173–194, 2007.

    Article  Google Scholar 

  4. Mehandiritta, R., Applications of queuing theory in healthcare. Int. J. Comput. Bus. Res. 2(2):2229–6166, 2011.

    Google Scholar 

  5. Chuang, C. L., Chang, P. C., and Lin, R. H., An Efficiency data envelopment analysis model reinforced by classification and regression tree for hospital performance evaluation. J. Med. Syst. 35(5):1075–1083, 2011.

    Article  PubMed  Google Scholar 

  6. Biju, M.K. and Naeema, K., Application of queuing theory in human resource management in healthcare, In: ICOQM-10, pp. 1019–1027, 2001.

  7. Jun, J. B., Jacobson, S. H., and Swisher, J. R., Application of discrete-event simulation in healthcare clinics: A survey. J. Oper. Res. Soc. 50(2):109–123, 1999.

    Article  Google Scholar 

  8. Silva, F., and Serra, D., Locating emergency services with different priorities: The priority queuing covering location problem. J. Oper. Res. Soc. 59(9):1229–1238, 2008.

    Article  Google Scholar 

  9. Yeboah, E.K. and Thomas, M.E., A cost-effective way of reducing outpatient clinic waiting times: How we did it. Int. J. Healthc. Admin. 7(1), 2010.

  10. Babes, M., and Sarma, G. V., Outpatient queues at the Ibn-Rochd health centre. J. Oper. Res. Soc. 42(10):845–855, 1991.

    Article  Google Scholar 

  11. Manzi, A, Magge H, Hedt-Gauthier, B.L., Michaelis, A.P., Cyamatare, F.R., Nyirazinyoye, L, Hirschhorn, L.R. and Ntaganira, J., Clinical mentorship to improve pediatric quality of care at the health centers of rural rwanda: A qualitative study of perceptions and acceptability of health workers. BMC Health Serv. Res. 14(275), 2014. Available at: http://www.biomedcentral.com/1472-6963/14/275 [Accessed: 27 Sept 2015].

  12. Mensah, J., Asamoah, J., and Tawiah, A. A., Optimizing patient flow and resource utilization in outpatient clinic: A comparative study of Nkawie government hospital and Aniwaa health center. J. Appl. Bus. Econ. 16(3):181–188, 2015.

    Google Scholar 

  13. Bhattacharjee, P., and Ray, P. K., Patient flow modelling and performance analysis of healthcare delivery processes in hospitals: A review and reflections. Comput. Ind. Eng. 78:299–312, 2014.

    Article  Google Scholar 

  14. Proudlove, N. C., Black, S., and Fletcher, A., OR and the challenge to improve the NHS: Modeling for insight and improvement in in-patient flows. J. Oper. Res. Soc. 58(2):145–158, 2007.

    Google Scholar 

  15. Cayirli, T., and Veral, E., Outpatient scheduling in healthcare: A review of literature. J. Med. Syst. 35(5):1075–1083, 2003.

    Google Scholar 

  16. Gul, M., and Guneri, A. F., A comprehensive review of emergency department simulation applications for normal and disaster conditions. Comput. Ind. Eng. 83:327–344, 2015.

    Article  Google Scholar 

  17. May, J. H., Spangler, W. E., and Strum, D. P., The surgical scheduling problem: Current research and future opportunities. Prod. Oper. Manag. 20(3):392–405, 2011.

    Article  Google Scholar 

  18. Ashton, R., Hague, L., Brandreth, M., Worthington, D., and Cropper, S., A simulation-based study of a NHS walk-in centre. J. Oper. Res. Soc. 56(2):153–161, 2005.

    Article  Google Scholar 

  19. Cayirli, T., and Gunes, E. D., Outpatient appointment scheduling in presence of seasonal walk-ins. J. Oper. Res. Soc. 65:512–531, 2014.

    Google Scholar 

  20. Fetter, R. B., and Thompson, J. D., Patients’ waiting time and doctors’ idle time in the outpatient setting. Health Serv. Res. 1(1):66–90, 1966.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Rising, E., Baron, R., and Averill, B., A system analysis of a university health service outpatient clinic. Oper. Res. 21(5):1030–1047, 1973.

    Article  Google Scholar 

  22. Fomundam, S., and Hermann, J.W., A survey of queuing theory applications in healthcare, Digital Repository at the University of Maryland, 2007. Available at: http://hdl.handle.net/1903/7222. [Accessed: 19 July 2013].

  23. Lakshmi, C., and Sivakumar, A. I., Application of queuing theory in healthcare: A literature review. Oper. Res. Healthc. 2(1–2):25–39, 2013.

    Google Scholar 

  24. Mayhew, L., and Smith, D., Using queuing theory to analyse the government’s 4-h completion time target in accident and emergency departments. Healthc. Manag. Sci. 11(1):11–21, 2008.

    Article  CAS  Google Scholar 

  25. Gunal, M., and Pidd, M., Discrete-event simulation for performance modeling in healthcare: A review of the literature. J. Simul. 4:42–51, 2010.

    Article  Google Scholar 

  26. Konrad, R., DeSotto, K., Grocela, A., McAuley, P., Wang, J., Lyons, J., and Bruin, M., Modelling the impact of changing patient flow processes in an emergency department: insights from a computer simulation study. Oper. Res. Healthc. 2(4):66–74, 2013.

    Google Scholar 

  27. Brailsford, S. C., Lattimer, V. A., Tarnaras, P., and Turnbull, J. C., Emergency and on-demand healthcare: Modeling a large complex system. J. Oper. Res. Soc. 55:34–42, 2004. Case-Oriented Paper.

    Article  Google Scholar 

  28. Gunal, M. M., A guide for building hospital simulation models. Health Syst. 1:17–25, 2012.

    Article  Google Scholar 

  29. Lane, D. C., Monefeldt, C., and Rosenhead, J. V., Looking in the wrong place for healthcare improvements: A system dynamics study of an accident and emergency department. J. Oper. Res. Soc. 51(5):518–531, 2000.

    Article  Google Scholar 

  30. Pelone, F., Kringos, D.S., Romaniello, A., Archibugi, M., Salsiri, C., and Ricciardi, W., Primary care efficiency measurement using data envelopment analysis: A systematic review. J. Med. Syst. 39(1): 156, 2015.

  31. O’Neill, L., Rauner, M., Heidenberger, K., and Kraus, M., A cross-national comparison and taxonomy of DEA-based hospital efficiency studies. Socio Econ. Plan. Sci. 42(3):158–189, 2008.

    Article  Google Scholar 

  32. Liu, J. S., Lu, L. Y. Y., Lu, W., and Lin, B. J. Y., A survey of DEA applications. Omega 41(5):893–902, 2013.

    Article  CAS  Google Scholar 

  33. Liu, J. S., Lu, L. Y. Y., Lu, W., and Lin, B. J. Y., Data envelopment analysis 1978–2010: A citation-based literature survey. Omega 41(1):3–15, 2013.

    Article  CAS  Google Scholar 

  34. Akazili, J., Adjuik, M., Appiah, C. J., and Zere, E., Using data envelopment analysis to measure the extent of technical efficiency of public health centers in Ghana. Bio. Med. Central Ltd. 20(2):232–248, 2008.

    Google Scholar 

  35. Flokou, A., Kontodimopoulos, N., and Niakas, D., Employing post-DEA cross-evaluation and cluster analysis in a sample of Greek NHS hospitals. J. Med. Syst. 35(5):1001–1014, 2011.

    Article  PubMed  Google Scholar 

  36. Kawaguchi, H., Tone, K., and Tsutsui, M., Estimation of the efficiency of Japanese hospitals using a dynamic and network data envelopment analysis model. Healthc. Manag. Sci. 17:101–112, 2014.

    Article  Google Scholar 

  37. Nunamaker, T. R., Measuring routine nursing service efficiency: A comparison of cost per day and data envelopment analysis models. Health Serv. Res. 18(2):183–208, 1983.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Ouellette, P., and Vierstraete, V., Technological change and efficiency in the presence of quasi- fixed inputs: A DEA application to the hospital sector. Eur. J. Oper. Res. 154(3):755–763, 2004.

    Article  Google Scholar 

  39. Parkin, D., and Hollingsworth, B., Measuring production efficiency of acute hospitals in Scotland, 1991–94: Validity issues in data envelopment analysis. Appl. Econ. 29(11):1425–1433, 1997.

    Article  Google Scholar 

  40. Hollingsworth, B., The measurement of efficiency and productivity of healthcare delivery. Health Econ. 17(10):1107–1128, 2008.

    Article  PubMed  Google Scholar 

  41. Sherman, H. D., Improving the Productivity of Service Businesses. Sloan. Manage. Rev. 25(3):11–23, 1984.

    PubMed  CAS  Google Scholar 

  42. Hollingsworth, B., Revolution, evolution or status-quo? Guidelines for efficiency measurement in healthcare. J. Prod. Anal. 37(1):1–5, 2012.

    Article  Google Scholar 

  43. Worthington, A. C., Frontier efficiency measurement in healthcare: A review of empirical techniques and selected applications. Med. Care Res. Rev. 61(2):135–170, 2004.

    Article  PubMed  Google Scholar 

  44. Chang, H., Cheng, M. A., and Das, S., Hospital ownership and operating efficiency: Evidence from Taiwan. Eur. J. Oper. Res. 159(2):513–527, 2004.

    Article  Google Scholar 

  45. Jehu-Appiah, C., Sekidde, S., Adjuik, M., Akazili, J., Almeida, S.D., Nyonator, F., Baltussen, R., Asbu, E.Z. and Kirigia, J.M., Ownership and technical efficiency of hospitals: Evidence from Ghana using data envelopment analysis. Cost Effect. Res. Allocation, 12:9, 2015. Available at: http://www.resource-allocation.com/content/12/1/9 [Accessed: 8 June 2015].

  46. Ramirez-Valdivia, M. T., Maturana, S., and Salvo-Garrido, S., A multiple-stage approach for performance improvement of primary healthcare practice. J. Med. Syst. 35(5):1015–1028, 2011.

    Article  PubMed  Google Scholar 

  47. Ersoy, K., Kavuncubasi, S., Ozcan, Y. A., and Harris, J. M., II, Technical efficiencies of Turkish hospitals: DEA approach. J. Med. Syst. 21(2):67–74, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. Hollingsworth, B., and Parkin, D., The efficiency of Scottish acute hospitals: An application of data envelopment analysis. IMA J. Math. Appl. Med. Biol. 12(3–4):161–173, 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Puig-Junoy, J., Partitioning input cost efficiency into its allocative and technical components: An Empirical DEA application to hospitals. Socio Econ. Plan. Sci. 34(3):199–218, 2000.

    Article  Google Scholar 

  50. Tsai, P. F., and Molinero, C. M., A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service. Eur. J. Oper. Res. 141(1):21–38, 2002.

    Article  Google Scholar 

  51. Salinas-Jimenez, J., and Smith, P., Data envelopment analysis applied to quality in primary healthcare. Ann. Oper. Res. 67(1):141–161, 1996.

    Article  Google Scholar 

  52. Thanassoulis, E., Boussofiane, A., and Dyson, R. G., A comparison of DEA and ratio analysis as tools for performance measurement. Omega 24(3):229–244, 1996.

    Article  Google Scholar 

  53. Chilingerian, J. A., and Sherman, H. D., DEA and primary care physician report cards: Deriving preferred practice cones from managed care service concepts and operating strategies. Ann. Oper. Res. 73:35–66, 1997.

    Article  Google Scholar 

  54. Wagner, J. M., Shimshak, D. G., and Novak, M. A., Advances in physician profiling: The use of DEA. Socio Econ. Plan. Sci. 37(2):141–163, 2003.

    Article  Google Scholar 

  55. Osman, I. H., Berbary, L. N., Sidani, Y., Al-Ayoubi, B., and Emrouznejad, A., Data envelopment analysis model for the appraisal and relative performance evaluation of nurses at an intensive care unit. J. Med. Syst. 35(5):1039–1062, 2011.

    Article  PubMed  Google Scholar 

  56. Lewis, H. F., Sexton, T. R., and Dolan, M. A., An efficiency-based multicriteria strategic planning model for ambulatory surgery centers. J. Med. Syst. 35(5):1029–1037, 2011.

    Article  PubMed  Google Scholar 

  57. Rouse, P., Harrison, J., and Turner, N., Cost and performance: Complements for improvement. J. Med. Syst. 35(5):1063–1074, 2011.

    Article  PubMed  Google Scholar 

  58. Charnes, A., Cooper, W. W., and Rhodes, E., Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6):429–444, 1978.

    Article  Google Scholar 

  59. Banker, R. D., Charnes, A., and Cooper, W. W., Some models for estimating technical and scale efficiencies in data envelopment analysis. Manag. Sci. 30(9):1078–1092, 1984.

    Article  Google Scholar 

  60. Farrell, M. J., The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 120(3):253–290, 1957.

    Article  Google Scholar 

  61. Lee, H., and Kim, C., Benchmarking of service quality with data envelopment analysis. Exp. Syst. Appl. 41(8):3761–3768, 2014.

    Article  Google Scholar 

  62. Charnes, A., and Cooper, W. W., Programming with linear fractional functionals. Nav. Res. Logist. Q. 9(3–4):181–185, 1962.

    Article  Google Scholar 

  63. Emrouznejad, A., and Cabanda, E., Managing service productivity: uses of frontier efficiency methodologies and MCDM for improving service performance. In: the series of “International Series in Operations Research & Management Science”, Springer-Verlag, ISBN 978-3-662-43436-9, 2014.

  64. Cooper, W. W., Seiford, L. M., and Zhu, J., Data envelopment analysis: models and interpretations, chapter 1:1–39. In: Cooper, W. W., Seiford, L. M., and Zhu, J. (Eds.), Handbook on data envelopment analysis. Kluwer Academic Publisher, Boston, pp. 3–4, 2004.

    Google Scholar 

  65. Cooper, W. W., Seiford, L. M., and Tone, K., Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, 2nd edition. Springer, New York, 2007.

    Google Scholar 

  66. Ridge, J. C., Jones, S. K., Nielsen, M. S., and Shahani, A. K., Capacity planning for intensive care units. Eur. J. Oper. Res. 105(2):346–355, 1998.

    Article  Google Scholar 

  67. Thanassoulis, E., Introduction to the theory and application of data envelopment analysis: a foundation text with integrated software. Kluwer Academic Publishers, USA, 2001.

    Book  Google Scholar 

  68. Harrison, J. P., Coppola, M. N., and Wakefield, M., Efficiency of federal hospitals in the United States. J. Med. Syst. 28(5):411–422, 2004.

    Article  PubMed  Google Scholar 

  69. Bwana, K. M., Measuring technical efficiency of faith based hospitals in Tanzania: An application of data envelopment analysis (DEA). Res. Appl. Econ. 7(1):1–12, 2015.

    Article  Google Scholar 

  70. Masiye, F., Kirigia, J. M., Emrouznejad, A., Sambo, L. G., Mounkaila, A., Chimfwembe, D., and Okello, D., Efficient management of health centres human resources in Zambia. J. Med. Syst. 30(6):473–481, 2006.

    Article  PubMed  Google Scholar 

  71. Zuckerman, S., Hadley, J., and Iezzoni, L., Measuring hospital efficiency with frontier cost functions. J. Health Econ. 13(3):255–280, 1994.

    Article  PubMed  CAS  Google Scholar 

  72. Al-Shammari, M., A multi-criteria data envelopment analysis model for measuring the productive efficiency of hospitals. Int. J. Oper. Prod. Manag. 19(9):879–891, 1999.

    Article  Google Scholar 

  73. Kose, T., Uckun, N., and Girginer, N., An efficiency analysis of the clinical departments of a public hospital in Eskisehir by using DEA. Glob. J. Adv. Pure Appl. Sci. 4:252–258, 2014.

    Google Scholar 

  74. Magnussen, J., Efficiency measurement and the operationalization of hospital production. Health Serv. Res. 31(1):21–37, 1996.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Weng, S. J., Wu, T., Blackhurst, J., and Mackulak, G., An extended DEA model for hospital performance evaluation and improvement. Health Serv Outcome Res. Methodol. 9(1):39–53, 2009.

    Article  Google Scholar 

  76. Banker, R. D., Conrad, R.F. and Strauss, R.P., A comparative application of data envelopment analysis and translog methods: An illustrative study of hospital production. 1986.

  77. Butler, T. W., and Li, L., The utility of returns to scale in DEA programming: An analysis of Michigan rural hospitals. Eur. J. Oper. Res. 161(2):469–477, 2005.

    Article  Google Scholar 

  78. Zere, E., McIntyre, D., and Addison, T., Technical efficiency and productivity of public sector hospitals in three South African provinces. S. Afr. J. Econ. 69(2):336–358, 2001.

    Article  Google Scholar 

  79. Dotoli, M., Epicoco, N., Falagario, M., and Sciancalepore, F., A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Comput. Ind. Eng. 79:103–114, 2015.

    Article  Google Scholar 

  80. Grosskopf, S., and Valdmanis, V., Measuring hospital performance: A nonparametric approach. J. Health Econ. 6(1):89–107, 1987.

    Article  PubMed  CAS  Google Scholar 

  81. Huang, Y. G., and McLaughlin, C. P., Relative efficiency in rural primary health care: An application of data envelopment analysis. Health Serv. Res. 24(2):143–158, 1989.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Kirigia, J. M., Emrouznejad, A., Cassoma, B., Asbu, E. Z., and Barry, S., A performance assessment method for hospitals: The case of municipal hospitals in Angola. J. Med. Syst. 32(6):509–519, 2008.

    Article  PubMed  Google Scholar 

  83. Prior, D., Efficiency and total quality management in healthcare organizations: A dynamic frontier approach. Ann. Oper. Res. 145(1):281–299, 2006.

    Article  Google Scholar 

  84. Gerdtham, U. G., Löthgren, M., Tambour, M., and Rehnberg, M., Internal markets and health care efficiency: A multiple-output stochastic frontier analysis. Health Econ. 8(2):151–164, 1999.

    Article  PubMed  CAS  Google Scholar 

  85. Parkin, D., and Hollingsworth, B., Measuring productivity efficiency of acute hospitals in Scotland, 1991-94: Validity issues in data envelopment analysis, Applied Economics, 29(11): 1425-1433, 1997.

  86. Byrnes, P., and Valdmanis, V., Analyzing technical and allocative efficiency of hospitals. In: Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. M. (Eds.), Data envelopment analysis: theory, methodology and applications. Kluwer, Boston, 1993.

    Google Scholar 

  87. Kang, H., Nembhard, H.B. and DeFlitch, C., identifying emergency department efficiency frontiers and the factors associated with their efficiency performance. In: Guan, Y., and Liao, H., (Eds), Proceedings of the 2014 Industrial and Systems Engineering Research Conference, 2014.

  88. Linna, M., Measuring hospital cost efficiency with panel data models. Health Econ. 7(5):415–427, 1998.

    Article  PubMed  CAS  Google Scholar 

  89. Kirigia, J. M., Emrouznejad, A., Sambo, L. G., Munguti, N., and Liambila, W., Using data envelopment analysis to measure the technical efficiency of public health centers in Kenya. J. Med. Syst. 28(2):155–166, 2004.

    Article  PubMed  Google Scholar 

  90. Valdmanis, V., Sensitivity analysis for DEA models: An empirical example using public Vs NFP hospitals. J. Public Econ. 48(2):185–205, 1992.

    Article  Google Scholar 

  91. Blank, J. L. T., and Van Hurst, B. L., Governance and performance: The performance of dutch hospitals explained by governance characteristics. J. Med. Syst. 35(5):991–999, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sorup, C.M., Estay, D.S., Jacobsen, P. and Anderson, P.D., Balancing patient flow and returning patients: A system dynamics study on emergency department crowding factors. Healthc. Manag. Sci. 2015. Available at: http://orbit.dtu.dk/ws/files/108550877/Balancing_patient.pdf [Accessed: 8 June 2015].

  93. Harper, P. R., and Gamlin, H. M., Reduced outpatient waiting times with improved appointment scheduling: A simulation modeling approach. OR Spectr. 2(2):207–222, 2003.

    Article  Google Scholar 

  94. O’Keefe, R. M., Investigating outpatient departments: Implementable policies and qualitative approaches. J. Oper. Res. Soc. 36(8):705–712, 1998.

    Article  Google Scholar 

  95. Zhu, Z., Heng, B. H., and Teow, K. L., Analysis of factors causing long patient waiting time and clinic overtime in outpatient clinics. J. Med. Syst. 36(2):707–713, 2012.

    Article  PubMed  Google Scholar 

  96. Aboueljinane, L., Sahin, E., and Jemai, Z., A review on simulation models applied to emergency medical service operations. Comput. Ind. Eng. 66(4):734–750, 2013.

    Article  Google Scholar 

  97. Brahimi, M., and Worthington, D. J., Queuing models for outpatient appointment systems: A case study. J. Oper. Res. Soc. 42(9):733–746, 1991.

    Google Scholar 

  98. Hill-Smith, I., Mathematical relationship between waiting times and appointment interval for doctors and patients. J. R. Coll. Gen. Pract. 39(329):492–494, 1989.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Khori, V., Changizi, S., Biuckians, E., Keshtkar, A., Alizadeh, A. M., Mohaghgheghi, A. M., and Rabie, M. R., Relationship between consultation length and rational prescribing of drugs in Gorgan City, Islamic Republic of Iran. East Mediterr. Health J. 18(5):480–486, 2012.

    PubMed  CAS  Google Scholar 

  100. Mankowska, D. S., Meisel, F., and Bierwirth, C., The home healthcare routing and scheduling problem with interdependent services. Healthc. Manag. Sci. 17:15–30, 2014.

    Article  Google Scholar 

  101. Welch, J. D., Appointment systems in hospitals and general practice: Appointment systems in hospital outpatient departments. J. Oper. Res. Soc. 15(3):224–232, 1964.

    Article  Google Scholar 

  102. Griffiths, J. D., Price-Lloyd, N., Smithies, M., and Williams, J. E., Modeling the requirement for supplementary nurses in an intensive care unit. J. Oper. Res. Soc. 56(2):126–133, 2005.

    Article  Google Scholar 

  103. Feldman, J., Liu, N., Topaloglu, H., and Ziya, S., Appointment scheduling under patient preference and No-show behavior. Oper. Res. 62(4):794–811, 2014.

    Article  Google Scholar 

  104. Hassin, R., and Mendel, S., Scheduling arrivals to queues: A single-server model with No- shows. Manag. Sci. 54(3):565–572, 2008.

    Article  Google Scholar 

  105. Klassen, K. J., and Yoogalingham, R., Improving performance in outpatient appointment services with a simulation optimization approach. Prod. Oper. Manag. 18(4):447–458, 2009.

    Article  Google Scholar 

  106. Huarng, F., and Lee, M. H., Using simulation in outpatient queues: A case study. Int. J. Healthc. Qual. Assur. 9(6):21–25, 1996.

    Article  CAS  Google Scholar 

  107. Cote, M. J., Patient flow and resource utilization in an outpatient clinic. Socio Econ. Plan. Sci. 33(3):231–245, 1999.

    Article  Google Scholar 

  108. Silvester, K., Lendon, R., Bevan, H., Steyn, R. and Walley, P., Reducing waiting times in the NHS: Is lack of capacity the problem? Clin. Manag. 12: Academic Paper, 1–7, 2004.

  109. Klassen, K. J., and Rohleder, T. R., Scheduling outpatient appointments in a dynamic environment. J. Oper. Manag. 14(2):83–101, 1996.

    Article  Google Scholar 

  110. Cayirli, T., Veral, E., and Rosen, H., Assessment of patient classification in appointment system design. Prod. Oper. Manag. 17(3):338–353, 2008.

  111. Halme, M., Joro, T., Korhonen, P., Salo, S., and Wallenius, J., A value efficiency approach to incorporating preference information in data envelopment analysis. Manag. Sci. 45(1):103–115, 1999.

    Article  Google Scholar 

  112. Golany, B., An interactive MOLP procedure for the extension of DEA to effectiveness analysis. J. Oper. Res. Soc. 39(8):725–734, 1988.

    Article  Google Scholar 

  113. Thanassoulis, E., and Dyson, R. G., Estimating preferred target input–output levels using data envelopment analysis. Eur. J. Oper. Res. 56(1):80–97, 1992.

    Article  Google Scholar 

  114. Zhu, J., Data envelopment analysis with preference structure. J. Oper. Res. Soc. 47(1):136–150, 1996.

    Article  Google Scholar 

  115. Athanassopoulos, A. D., Lambroukos, N., and Seiford, L., Data envelopment scenario analysis for setting targets to electricity generating plants. Eur. J. Oper. Res. 115(3):413–428, 1999.

    Article  Google Scholar 

  116. Thanassoulis, E., and Dunstan, P., Guiding schools to improved performance using data envelopment analysis: An illustration with data from a local education authority. J. Oper. Res. Soc. 45(11):1247–1262, 1994.

    Article  Google Scholar 

  117. Liu, J., Ding, F. F., and Lall, V., Using data envelopment analysis to compare suppliers for supplier selection and performance improvement. Supply Chain Manag. Int. J. 5(3):143–150, 2000.

    Article  Google Scholar 

  118. Martic, M., and Savic, G., An application of DEA for Comparative analysis and ranking of regions in Serbia with regards to social-economic development. Eur. J. Oper. Res. 132(2):343–356, 2001.

    Article  Google Scholar 

  119. Thanassoulis, E., Boussofiane, A., and Dyson, R. G., Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis. Eur. J. Oper. Res. 80(3):588–607, 1995.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor of Journal of Medical Systems, Professor Jesse M Ehrenfeld, and three reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Emrouznejad.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdar, K.A., Emrouznejad, A. & Dey, P.K. Assessing the Queuing Process Using Data Envelopment Analysis: an Application in Health Centres. J Med Syst 40, 32 (2016). https://doi.org/10.1007/s10916-015-0393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0393-1

Keywords

Navigation