Skip to main content

Advertisement

Log in

Simulation and Visualization of Liver Cancer Ablation Focus in Optical Surgical Navigation

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Radiofrequency ablation therapy of liver cancer is a local mini-invasive treatment technology with several advantages, such as low trauma, safety, effectiveness, and quick postoperative recovery. The application of the optical surgical navigation system in radiofrequency ablation therapy can realize the real-time positioning of surgical instruments and focus. The positioning results can be displayed on the computer, thereby guiding doctors to accurately insert the radiofrequency electrode into the focus and improving surgical efficiency. Meanwhile, the accurate evaluation of the form and size of the ablation focus by the navigation system is the key to realizing the complete ablation of liver cancer. Therefore, based on the heat conduction equation, this paper simplifies the simulation process of the ablation focus, calculates the volume of the ablation focus by distinguishing boundary points and internal points, achieves the effective simulation of the ablation results in the surgery, and reconstructs the ablation focus by using ray casting algorithm and mobile cube algorithm for 3D visualization processing, thereby providing doctors the convenience of being able to simulate the radiofrequency ablation surgery before the actual surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kimman, M., Norman, R., Jan, S., Kingston, D., and Woodward, M., The burden of cancer in member countries of the Association of Southeast Asian Nations (ASEAN). Asian Pac. J. Cancer Prev. 13(2):411–420, 2012.

    Article  PubMed  Google Scholar 

  2. Zhang, B., Moser, M., Zhang, E., and Zhang, W.J., Radiofrequency ablation technique in the treatment of liver tumours: review and future issues. J. Med. Eng. Technol. 37(2):150–159, 2013.

    Article  PubMed  CAS  Google Scholar 

  3. de Senneville, B.D., Roujol, S., Jaïs, P., Moonen, C.T., Herigault, G., and Quesson, B., Feasibility of fast MR-thermometry during cardiac radiofrequency ablation. NMR Biomed. 25(4):556–562, 2012.

    Article  PubMed  Google Scholar 

  4. Schoellnast, H., Deodhar, A., Hsu, M., Moskowitz, C., Nehmeh, S.A., Thornton, R.H., Sofocleous, C.T., Alago Jr., W., Downey, R.J., Azzoli, C.G., Rosenzweig, K.E., and Solomon, S.B., Recurrent non-small cell lung cancer: evaluation of CT-guided radiofrequency ablation as salvage therapy. Acta Radiol. 53(8):893–899, 2012.

    Article  PubMed  Google Scholar 

  5. Wang, Z., Aarya, I., Gueorguieva, M., Liu, D., Luo, H., Manfredi, L., Wang, L., McLean, D., Coleman, S., Brown, S., and Cuschieri, A., Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom. Int. J. Comput. Assist. Radiol. Surg. 7(6):941–948, 2012.

    Article  PubMed  Google Scholar 

  6. Clasen, S., Schmidt, D., Boss, A., Dietz, K., Kröber, S.M., Claussen, C.D., and Pereira, P.L., Multipolar radiofrequency ablation with internally cooled electrodes: Experimental study in ex vivo bovine liver with mathematic modeling. Radiology. 238(3):881–890, 2006.

    Article  PubMed  Google Scholar 

  7. Rieder, C., Kröger, T., Schumann, C., and Hahn, H.K., GPU-based real-time approximation of the ablation zone for radiofrequency ablation. IEEE Trans. Vis. Comput. Graph. 17(12):1812–1821, 2011.

    Article  PubMed  Google Scholar 

  8. Fiala, D., Lomas, K.J., and Stohrer, M., A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87(5):1957–1972, 1999.

    PubMed  CAS  Google Scholar 

  9. Diller, K.R., Modeling of bioheat transfer processes at high and low temperatures. Adv. Heat Tran. 22:157–357, 1992.

    Article  Google Scholar 

  10. Pennes, H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. J. Appl. Physiol. 85(1):5–34, 1998.

    PubMed  CAS  Google Scholar 

  11. Brodlie, K., and Wood, J., Recent advances in volume visualization. Comput. Graph. Forum. 20(2):125–148, 2001.

    Article  Google Scholar 

  12. Laha, B., Sensharma, K., Schiffbauer, J.D., and Bowman, D.A., Effects of immersion on visual analysis of volume data. IEEE Trans. Vis. Comput. Graph. 18(4):597–606, 2012.

    Article  PubMed  Google Scholar 

  13. Westover, L., Footprint evaluation for volume rendering. Comput. Graph. 24(4):367–376, 1990.

    Article  Google Scholar 

  14. Yu, H., Lee, T., Yeh, I., Yang, Y., Li, W., and Zhang, J.J., An RBF-based reparameterization method for constrained texture mapping. IEEE Trans. Vis. Comput. Graph. 18(7):1115–1124, 2012.

    Article  PubMed  Google Scholar 

  15. Heinrich, J., Bachthaler, S., and Weiskopf, D., Progressive splatting of continuous scatterplots and parallel coordinates. Comput. Graph. Forum. 30(3):653–662, 2011.

    Article  Google Scholar 

  16. Zhang, Q., Eagleson, R., and Peters, T.M., Volume visualization: a technical overview with a focus on medical applications. J. Digit. Imaging. 24(4):640–664, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levoy, M., Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3):29–37, 1988.

    Article  Google Scholar 

  18. van Almsick, M., Peeters, T.H., Prckovska, V., Vilanova, A., and Ter Haar Romeny, B., GPU-based ray-casting of spherical functions applied to high angular resolution diffusion imaging. IEEE Trans. Vis. Comput. Graph. 17(5):612–625, 2011.

    Article  PubMed  Google Scholar 

  19. Schlegel, P., Makhinya, M., and Pajarola, R., Extinction-based shading and illumination in gpu volume ray-casting. IEEE Trans. Vis. Comput. Graph. 17(12):1795–1802, 2011.

    Article  PubMed  Google Scholar 

  20. Rossler, F., Botchen, R.P., and Ertl, T., Dynamic shader generation for GPU-based multi-volume ray casting. IEEE Comput. Graph. Appl. 28(5):66–77, 2008.

    Article  PubMed  Google Scholar 

  21. Schroeder, W.J., Avila, L.S., and Hoffman, W., Visualizing with VTK: a tutorial. IEEE Comput. Graph. Appl. 20(5):20–27, 2000.

    Article  Google Scholar 

  22. Rosset, A., Spadola, L., and Ratib, O., OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging. 17(3):205–216, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lorensen, W.E., and Cline, H.E., Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4):163–169, 1987.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China under Grant No.61505037, the State Scholarship Fund under Grant CSC NO.201408440326, the Pearl River S&T Nova Program of Guangzhou under Grant No.2014J2200049 and No.201506010035, the Guangdong Provincial Science and Technology Program under Grant No.2013B090600057, No.2014A020215006 and 2014A020212657, the Fundamental Research Funds for the Central Universities under Grant No.2014ZG003D, the Natural Scientific Foundation of Guangxi under Grant No.2015GXNSFBA139259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqian Yang.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Yang, R., Chen, H. et al. Simulation and Visualization of Liver Cancer Ablation Focus in Optical Surgical Navigation. J Med Syst 40, 19 (2016). https://doi.org/10.1007/s10916-015-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0397-x

Keywords

Navigation