Skip to main content
Log in

Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aja, V. S., and Prabhakaran, D., Coronary heart disease in Indians: Implications of the INTERHEART study. Indian J. Med. Res. 132(5):561, 2010.

    Google Scholar 

  2. Townsend, N., Nichols, M., Scarborough, P., and Rayner, M., Cardiovascular disease in Europe-epidemiological update 2015. Eur. Heart J. 36:2696–2705, 2015.

    Article  PubMed  Google Scholar 

  3. Fernandez, R., Rolley, J. X., Rajaratnam, R., Sundar, S., Patel, N. C., and Davidson, P. M., Risk factors for coronary heart disease among Asian Indians living in Australia. J. Transcult. Nurs. 26(1):57–63, 2015.

    Article  PubMed  Google Scholar 

  4. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al., Executive summary: heart disease and stroke statistics-2015 update: a report from the American heart association. Circulation 131(4):434–441, 2015.

    Article  Google Scholar 

  5. Serruys, P. W., Unger, F., Sousa, J. E., Jatene, A., Bonnier, H. J., Schönberger, J. P., et al., Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N. Engl. J. Med. 344(15):1117–1124, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Y. K., Chen, C. P., Tsai, W. C., Chiao, Y. C., and Lin, B. Y. J., Cost-effectiveness of clinical pathway in coronary artery bypass surgery. J. Med. Syst. 35(2):203–213, 2011.

    Article  PubMed  Google Scholar 

  7. Hannan, E. L., Racz, M. J., Walford, G., Jones, R. H., Ryan, T. J., Bennett, E., et al., Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N. Engl. J. Med. 352(21):2174–2183, 2005.

    Article  CAS  PubMed  Google Scholar 

  8. Hannan, E. L., Wu, C., Walford, G., Culliford, A. T., Gold, J. P., Smith, C. R., et al., Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. N. Engl. J. Med. 358(4):331–341, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Rumberger, J., Tomographic Plaque Imaging with CT. In Studies in health technology and informatics. In: Suri, J. S. et al. (Eds.), Plaque Imaging: Pixel to Molecular Level, 182–207, 2004.

  10. Shinbane, J. S., Budoff, M. J., Computed tomographic cardiovascular imaging. In studies in health technology and informatics. In: Suri J. S. et al. (Eds.), Plaque Imaging: Pixel to Molecular Level, 148–181, 2004.

  11. Schoenhagen, P., White, R. D., Nissen, S. E., and Tuzcu, E. M., Coronary imaging: angiography shows the stenosis, but IVUS, CT, and MRI show the plaque. Cleve. Clin. J. Med. 70(8):713–720, 2003.

    Article  PubMed  Google Scholar 

  12. Ramani, K., Judd, R. M., Holly, T. A., Parrish, T. B., Rigolin, V. H., Parker, M. A., et al., Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98(24):2687–2694, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Schoenhagen, P., and Nissen, S., Understanding coronary artery disease: tomographic imaging with intravascular ultrasound. Heart 88(1):91–96, 2002.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wahle, A., Sonka M., Coronary plaque analysis by multimodality fusion. In studies in health technology and informatics. In: Suri JS et al. (Eds.), Plaque Imaging: Pixel to Molecular Level, 321–359, 2004.

  15. Araki, T., Ikeda, N., Dey, N., Acharjee, S., Molinari, F., Saba, L., et al., Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness. J. Ultrasound Med. 34(3):469–482, 2015.

    Article  PubMed  Google Scholar 

  16. Casscells, W., Naghavi, M., and Willerson, J. T., Vulnerable atherosclerotic plaque a multifocal disease. Circulation 107(16):2072–2075, 2003.

    Article  PubMed  Google Scholar 

  17. Scott, D. S., Arora, U. K., Farb, A., Virmani, R., and Weissman, N. J., Pathologic validation of a new method to quantify coronary calcific deposits in vivo using intravascular ultrasound. Am. J. Cardiol. 85(1):37–40, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Santos Filho, E., Saijo, Y., Tanaka, A., and Yoshizawa, M., Detection and quantification of calcifications in intravascular ultrasound images by automatic thresholding. Ultrasound Med. Biol. 34(1):160–165, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. Taki, A., Najafi, Z., Roodaki, A., Setarehdan, S. K., Zoroofi, R. A., Konig, A., et al., Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int. J. Comput. Assist. Radiol. Surg. 3(3–4):347–354, 2008.

    Article  Google Scholar 

  20. Zhang, Q., Wang, Y., Wang, W., Ma, J., Qian, J., and Ge, J., Automatic segmentation of calcifications in intravascular ultrasound images using snakes and the contourlet transform. Ultrasound Med. Biol. 36(1):111–129, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Gao, Z., Guo, W., Liu, X., Huang, W., Zhang, H., Tan, N., et al., Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images. PLoS ONE 9(11):1–19, 2014.

    Google Scholar 

  22. Weissman, N. J., Palacios, I. F., Nidorf, S. M., Dinsmore, R. E., and Weyman, A. E., Three-dimensional intravascular ultrasound assessment of plaque volume after successful atherectomy. Am. Heart J. 130(3):413–419, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Araki, T., Ikeda, N., Molinari, F., Dey, N., Acharjee, S., Saba, L., et al., Link between automated coronary calcium volumes from intravascular ultrasound to automated carotid IMT from B-mode ultrasound in coronary artery disease population. Int. Angiol.: J. Int. Union Angiol. 33(4):392–403, 2014.

    CAS  Google Scholar 

  24. Seabra, J., Ciompi, F., Radeva, P., and Sanches, J. M., A rayleigh mixture model for IVUS imaging. In: Sanches, J. M., et al. (Eds.), Ultrasound imaging. Springer, US, pp. 25–47, 2012.

    Chapter  Google Scholar 

  25. Suri, J. S., Kathuria, C., Molinari, F., Atherosclerosis disease management. Springer Science & Business Media, 2010.

  26. Araki, T., Nakamura, M., Utsunomiya, M., and Sugi, K., Visualization of coronary plaque in arterial remodeling using a new 40‐MHz intravascular ultrasound imaging system. Catheter. Cardiovasc. Interv. 81(3):471–480, 2013.

    Article  PubMed  Google Scholar 

  27. Saba, L., Sanches, J. M., Pedro, L. M., Suri, J. S. (Eds.). Multi-Modality Atherosclerosis Imaging and Diagnosis. Springer New York,2014.

  28. Molinari, F., Zeng, G., and Suri, J. S., Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. J. Med. Syst. 5(35):905–919, 2011.

    Article  Google Scholar 

  29. Pham, D. L., Xu, C., and Prince, J. L., Current methods in medical image segmentation 1. Annu. Rev. Biomed. Eng. 2(1):315–337, 1998.

    Article  Google Scholar 

  30. Kim, S. W., Mintz, G. S., Lee, W. S., Cho, J. H., Hong, S. A., Kwon, J. E., et al., DICOM-based intravascular ultrasound signal intensity analysis: an echoplaque medical imaging bench study. Coron. Artery Dis. 25(3):236–241, 2014.

    PubMed  Google Scholar 

  31. Otsu, N., A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27, 1975.

    Google Scholar 

  32. Hartigan, J. A., Wong, M. A., Algorithm AS 136: A K-means clustering algorithm. Applied Statistics. 28(1):100–108, 1979.

  33. Jain, A. K., Dubes, R. C., Algorithms for Clustering Data. Prentice-Hall, Inc., 1988.

  34. Zadeh, L. A., Fuzzy sets. Inf. Control. 8(3):338–353, 1965.

    Article  Google Scholar 

  35. Li, S. Z., Markov random field modeling in computer vision. Springer Science & Business Media. 1995.

  36. Wang, Q., HMRF-EM-image: implementation of the hidden markov random field model and its expectation-maximization algorithm. arXiv preprint arXiv:1207.3510. 2012.

  37. Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., and Markey, M. K., Complex wavelet structural similarity: a new image similarity index. IEEE Trans. Image Process. 18(11):2385–2401, 2009.

    Article  PubMed  Google Scholar 

  38. Libby, P., Ridker, P. M., and Maseri, A., Inflammation and atherosclerosis. Circulation 105(9):1135–1143, 2002.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J. C., and Bennett, M., Aging and atherosclerosis mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111(2):245–259, 2012.

    Article  CAS  PubMed  Google Scholar 

  40. Thanassoulis, G., Peloso, G. M., Pencina, M. J., Hoffmann, U., Fox, C. S., Cupples, L. A., et al., A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium the Framingham heart study. Circ.: Cardiovasc. Genet. 5(1):113–121, 2012.

    CAS  Google Scholar 

  41. Hoogeveen, R. C., Gaubatz, J. W., Sun, W., Dodge, R. C., Crosby, J. R., Jiang, J., et al., Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease the atherosclerosis risk in communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 34(5):1069–1077, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Picano, E., and Paterni, M., Ultrasound tissue characterization of vulnerable atherosclerotic plaque. Int. J. Mol. Sci. 16(5):10121–10133, 2015.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., and Kanne, W. B., Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847, 1998.

    Article  CAS  PubMed  Google Scholar 

  44. Smith, S. C., Dove, J. T., Jacobs, A. K., Kennedy, J. W., Kereiakes, D., Kern, M. J., et al., ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines) 333: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions. J. Am. Coll. Cardiol. 37(8):2239–2239, 2001.

    Article  Google Scholar 

  45. Janić, M., Lunder, M., Šabovič, M., Arterial stiffness and cardiovascular therapy. BioMed Research International, 2014.

  46. Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A., van Popele, N. M., Bos, M. L., Schalekamp, M. A., et al., Arterial stiffness and risk of coronary heart disease and stroke the rotterdam study. Circulation 113(5):657–663, 2006.

    Article  PubMed  Google Scholar 

  47. Bots, M. L., Baldassarre, D., Simon, A., de Groot, E., O’Leary, D. H., Riley, W., et al., Carotid intima-media thickness and coronary atherosclerosis: weak or strong relations? Eur. Heart J. 28(4):398–406, 2007.

    Article  PubMed  Google Scholar 

  48. Ikeda, N., Gupta, A., Dey, N., Bose, S., Araki, T., Elisa, C. G., et al., Improve the correlation between the carotid and coronary arthrosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement. Ultrasound Med. Biol. 41(5):1247–62, 2015.

    Article  PubMed  Google Scholar 

  49. Araki, T., Ikeda, N., Shukla, D., Londhe, N. D., Shrivastava, V. K., Banchhor, S. K. et al., A New Method for IVUS-based Coronary Artery Disease Risk Stratification: A Link between Coronary & Carotid Ultrasound Plaque Burdens, Computer Methods and Programs in Biomedicine. [Accepted] 2015.

  50. Araki, T., Ikeda, N., Dey, N., Chakraborty, S., Saba, L., Kumar, D., et al., A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. Comput. Methods Prog. Biomed. 118(2):158–172, 2015.

    Article  Google Scholar 

  51. Katouzian, A., Angelini, E. D., Carlier, S. G., Suri, J. S., Navab, N., Laine, A. F., A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Trans. Inf. Technol. Biomed 16(5):823–834, 2012.

  52. Klingensmith, J. D., Shekhar, R., and Vince, D. G., Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans. Med. Imaging 19(10):996–1011, 2000.

    Article  CAS  PubMed  Google Scholar 

  53. Kovalski, G., Beyar, R., Shofti, R., and Azhari, H., Three-dimensional automatic quantitative analysis of intravascular ultrasound images. Ultrasound Med. Biol. 26(4):527–537, 2000.

    Article  CAS  PubMed  Google Scholar 

  54. Cardinal, M. H. R., Meunier, J., Soulez, G., Maurice, R. L., Therasse, É., and Cloutier, G., Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. Med. Imaging 25(5):590–601, 2006.

    Article  PubMed  Google Scholar 

  55. Sanz-Requena, R., Moratal, D., García-Sánchez, D. R., Bodí, V., Rieta, J. J., and Sanchis, J. M., Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. Comput. Med. Imaging Graph. 31(2):71–80, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Harman S. Suri, Mira Loma, Sacramento, CA, USA for proof reading the manuscript. We acknowledge our clinicians (co-authors of this paper) for supplying IVUS image data and expert scorings.

Conflict of interest

Dr. Jasjit S. Suri has a relationship with AtheroPoint™, Roseville, CA, USA which is dedicated to Atherosclerosis Disease Management, including Stroke and Cardiovascular imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasjit S. Suri.

Additional information

This article is part of the Topical Collection on Education & Training

Appendix

Appendix

Automatic threshold-based algorithm

Otsu et al. [Otsu-IEEE-1979] developed a nonparametric and unsupervised method based on the maximization of the separability of the resultant classes. The procedure use the 0th and the first-order cumulative moments of the gray level histogram. The procedure is very simple and effective, hence used as a threshold estimator in our work.

Let the pixels of any given image be represented in M gray levels [1, 2, ⋯, M]. The number of pixels at gray level i is denoted by n i and the total number of pixels by N = n 1 + n 2 + ⋯ + n M . After normalization the gray-level histogram may be regarded as a probability distribution:

$$ \begin{array}{cc}\hfill {p}_i=\frac{n_i}{N},\hfill & \hfill\ {p}_i\ge 0,{\displaystyle \sum_{i=1}^M}{p}_i=1\hfill \end{array} $$
(1)

Pixels are separated into two classes, C 0 and C 1 (object and background or vice versa), by a threshold at gray level k; C 0 denotes pixels with grey levels [1, ⋯, N]. Then, the probabilities of class occurrence and the class mean gray levels, respectively, are given by:

$$ {w}_0={P}_r\left({C}_0\right) = {\displaystyle \sum_{i=1}^k}{p}_i=w(k) $$
(2)
$$ {w}_1={P}_r\left({C}_1\right)={\displaystyle \sum_{i=k+1}^M}{p}_i=1-w(k) $$
(3)

and

$$ {\mu}_0={\displaystyle \sum_{i=1}^k}i{P}_r\left(i\Big|{C}_0\right)={\displaystyle \sum_{i=1}^k}i{p}_i/{w}_0=\mu (k)/w(k) $$
(4)
$$ {\mu}_1={\displaystyle \sum_{i=k+1}^M}i{P}_r\left(i\Big|{C}_1\right)={\displaystyle \sum_{i=k+1}^M}i{p}_i/{w}_1 = \frac{\mu_T-\mu (k)}{1-w(k)} $$
(5)

where

$$ w(k)={\displaystyle \sum_{i=1}^k}{p}_i $$

and

$$ \mu (k)={\displaystyle \sum_{i=1}^k}i{p}_i $$

are the 0th and first order cumulative moments of the histogram up to the k th level, respectively, and

$$ {\mu}_T=\mu (M)={\displaystyle \sum_{i=1}^M}i{p}_i $$

The optimum threshold is defined as the value that maximizes the between class variance

$$ {\sigma}_B^2(k) = \frac{{\left[{\mu}_Tw(k)-\mu (k)\right]}^2}{w(k)\left[1-w(k)\right]} $$
(6)

Thus the optimal threshold k * is given by:

$$ {\sigma}_B^2\left(k*\right)=\underset{1\le k<M}{ \max }{\sigma}_B^2 $$
(7)

K-means algorithm

Hartigan and Wong [Hartigan-JRSS-1979] proposed a K-means algorithm to divide n points into m clusters so that the within-cluster sum of squares is minimized. K-means algorithm is an unsupervised clustering algorithm that classifies the input data points into multiple classes based on their inherent distance from each other and hence used in our work. The algorithm assumes that the data features form a vector space and tries to find natural clustering in them. The points are clustered around centroids μ i  ∀ i = 1 ⋯ m which are obtained by minimizing the objective

$$ V={\displaystyle \sum_{i=1}^m}{\displaystyle \sum_{x_j\in {S}_i}}{\left({x}_j - {\mu}_i\right)}^2 $$
(8)

where there are m clusters S i i = 1, 2, . . ., m and μ i is the centroid or mean point of all the points x j  ∈ S i . Various steps of the algorithm are as follows:

  1. 1.

    First we compute the intensity distribution of the intensities.

  2. 2.

    Then we initialize the centroids with m random intensities.

  3. 3.

    We have to repeat the following steps until the cluster labels of the image do not change anymore.

  4. 4.

    Now, we cluster the point based on distance of their intensities from the centroid intensities.

$$ {c}^{(i)}= \arg \min {\left\Vert {x}^{(i)} - {\mu}_j\right\Vert}^2 $$
(9)
  1. 5.

    Finally, we compute the new centroid for each of the clusters.

$$ {\mu}_i = \frac{{\displaystyle {\sum}_{i=1}^m}I\left\{{c}^{(i)}=j\right\}{x}^{(i)}}{{\displaystyle {\sum}_{i=1}^m}I\left\{{c}^{(i)}=j\right\}} $$
(10)

Where m is a parameter of the algorithm (the number of clusters to be found), I iterates over all the intensities, j iterates over all the centroids and μ i are the centroid intensities.

Fuzzy c-means algorithm

Zadeh [Zadeh-I&C-1965] proposed a fuzzy set theory and gives an idea of uncertainty of belongings, which is described by a membership function. One of the most widely used approaches to fuzzy prototype-based clustering is Fuzzy c-Means (FCM) clustering. The FCM algorithm is an extension of the K-means algorithm and provide a generalization of the FCM algorithm and hence used in our work. Given the data set X, we first choose the number of clusters c, the weighting exponent m, and the termination tolerance ε > 0. Now we compute the cluster centers:

$$ {v}_i^{(l)} = \frac{{\displaystyle {\sum}_{k=1}^N}{\left({\mu}_{ij}^{\left(l-1\right)}\right)}^m{X}_k}{{\displaystyle {\sum}_{k=1}^N}{\left({\mu}_{ij}^{\left(l-1\right)}\right)}^m},\ 1\le i\le c $$
(11)

Then we compute the distances:

$$ {D}_{ik}^2 = {\left\Vert {x}_k-{v}_i\right\Vert}^2 = \sqrt{{\left({x}_k-{v}_i\right)}^T\ \left({x}_k-{v}_i\right)},\ 1\le i\ \le c,\ 1\le k\ \le N $$
(12)

Now we update the partition matrix:if

$$ {D}_{ik}>0\ \mathrm{f}\mathrm{o}\mathrm{r}\kern1.75em 1\le i\le c,\ 1\le k\ \le N $$
(13)
$$ {\mu}_{ik}^{(l)} = \frac{1}{{\displaystyle {\sum}_{j=1}^c}{\left(\frac{D_{ik}}{D_{jk}}\right)}^{\frac{2}{m-1}}}\kern2em \mathrm{otherwise}\kern2em {\mu}_{ik}^{(l)}=0 $$
(14)

until

$$ \left\Vert {U}^{(l)} - {U}^{\left(l-1\right)}\right\Vert < \varepsilon $$

Where, U is the cluster center.

Hidden markov random field algorithm

Wang et al. [Wang-arXiv-2012] implement a MATLAB toolbox named HMRF-EM-image for 2D image segmentation. This tool can implement an edge-prior-preserving image segmentation and hence used in our work. HMRF-EM algorithm is given below:

  1. 1.

    First we start with initial parameters set Ø(0).

  2. 2.

    Now we calculate likelihood distribution P (t)(y i |x i θ xi ).

  3. 3.

    Current parameter set Ø(t) is used to estimate labels by MAP estimations.

  4. 4.

    Now posterior distribution is calculated for all l ∈ L and all pixel y i

$$ {P}^{(t)}\left(l\Big|{y}_i\right) = \frac{G\left({y}_i;{\theta}_l\right)P\left(l\Big|{x}_{N_i}^{(t)}\right)}{P^{(t)}\left({y}_i\right)} $$
(15)

Where \( {x}_{N_i}^{(t)} \) is the neighbourhood configuration of x (t) i and \( {P}^{(t)}\left({y}_i\right)={\displaystyle \sum_{l\in L}}G\left({y}_i;{\theta}_l\right)P\left(l\left|{x}_{N_i}^{(t)}\right.\right) \)

Here we have

$$ P\left(l\left|{x}_{N_i}^{(t)}\right.\right)=\frac{1}{Z} \exp \left( - {\displaystyle \sum_{j\in {N}_i}}{V}_c\left(l,{x}_j^{(t)}\right)\right) $$

P (t)(l|y i ) is used to update the parameters

$$ {\mu}_l^{\left(t+1\right)} = \frac{{\displaystyle {\sum}_i}{P}^{(t)}\left(l\Big|{y}_i\right){y}_i}{{\displaystyle {\sum}_i}{P}^{(t)}\left(l\Big|{y}_i\right)} $$
$$ {\left({\sigma}_l^{\left(t+1\right)}\right)}^2 = \frac{{\displaystyle {\sum}_i}{P}^{(t)}\left(l\Big|{y}_i\right){\left({y}_i - {\mu}_l^{\left(t+1\right)}\right)}^2}{{\displaystyle {\sum}_i}{P}^{(t)}\left(l\Big|{y}_i\right)} $$

For minimizing the total posterior energy we need to solve x*

$$ \begin{array}{l}{x}^{*}=\mathrm{argmin}\ \left\{U\left(y\Big|x,\O \right)+U(x)\right\}\\ {}\kern1.68em \mathrm{x}\in x\end{array} $$
(16)

where, the likelihood energy is

$$ U\left(\left(y\Big|x\right),\O \right)={\displaystyle \sum_i}U\left(\left({y}_i\Big|{x}_i\right),\ \O \right) = {\displaystyle \sum_i}\left[\frac{{\left({y}_i - {\mu}_{xi}\right)}^2}{2{\sigma}_{xi}^2}+ \ln {\sigma}_{xi}\right] $$

In the image domain, we assume that one pixel has at most 4 neighbours, than the clinic potential defined on the neighboring pixel is

$$ {V}_c\left({x}_i,\ {x}_j\right) = \frac{1}{2}\left(1-{I}_{xi,\kern0.5em xj}\right) $$
(17)

where

$$ {I}_{xi,\kern0.5em xj} = \left\{\begin{array}{c}\hfill 0\kern1.5em \mathrm{if}\ {\mathrm{x}}_{\mathrm{i}}\ne {x}_j\hfill \\ {}\hfill 1\kern1.5em \mathrm{if}\ {\mathrm{x}}_{\mathrm{i}}={x}_j\hfill \end{array}\right. $$

An iterative algorithm is designed to solve Eq. number 16:

  1. 1.

    From the previous loop of EM estimator we have initial estimate x (0).

  2. 2.

    Provided x (k), for all 1 ≤ i ≤ N, we find

$$ {x}_i^{\left(k+1\right)}= argmin\ \left\{U\left({y}_i\Big|l\right)+{\displaystyle \sum_{j\in {N}_i}}{V}_c\left(l,{x}_j^{(k)}\right)\right\} $$
(18)
  1. 3.

    Repeat the above step until U((y|x), Ø) + U(x) converges or a maximum k is achieved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, T., Banchhor, S.K., Londhe, N.D. et al. Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos. J Med Syst 40, 51 (2016). https://doi.org/10.1007/s10916-015-0407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0407-z

Keywords

Navigation