Skip to main content
Log in

A Computer-Aided Diagnosis System for Measuring Carotid Artery Intima-Media Thickness (IMT) Using Quaternion Vectors

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This study aims investigating adjustable distant fuzzy c-means segmentation on carotid Doppler images, as well as quaternion-based convolution filters and saliency mapping procedures. We developed imaging software that will simplify the measurement of carotid artery intima-media thickness (IMT) on saliency mapping images. Additionally, specialists evaluated the present images and compared them with saliency mapping images. In the present research, we conducted imaging studies of 25 carotid Doppler images obtained by the Department of Cardiology at Fırat University. After implementing fuzzy c-means segmentation and quaternion-based convolution on all Doppler images, we obtained a model that can be analyzed easily by the doctors using a bottom-up saliency model. These methods were applied to 25 carotid Doppler images and then interpreted by specialists. In the present study, we used color-filtering methods to obtain carotid color images. Saliency mapping was performed on the obtained images, and the carotid artery IMT was detected and interpreted on the obtained images from both methods and the raw images are shown in Results. Also these results were investigated by using Mean Square Error (MSE) for the raw IMT images and the method which gives the best performance is the Quaternion Based Saliency Mapping (QBSM). 0,0014 and 0,000191 mm2 MSEs were obtained for artery lumen diameters and plaque diameters in carotid arteries respectively. We found that computer-based image processing methods used on carotid Doppler could aid doctors’ in their decision-making process. We developed software that could ease the process of measuring carotid IMT for cardiologists and help them to evaluate their findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ucar, G., Secil, M., Demir, O., Demir, T., Comlekci, A., Uysal, S., and Esen, A. A., The combined use of brachial artery flow-mediated dilatation and carotid artery intima-media thickness measurements may be a method to determine vasculogenic erectile dysfunction. Int. J. Impot. Res. 19(6):577–583, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Gaitini, D., and Soudack, M., Diagnosing carotid stenosis by Doppler sonography: State of the art. J. Ultrasound Med. 24:1127–1136, 2005.

    PubMed  Google Scholar 

  3. Tahmasebpour, H. R., Buckley, A. R., Cooperberg, P. L., and Fix, C. H., Sonographic examination of the carotid arteries. Radiographics 25:1561–1575, 2005.

    Article  PubMed  Google Scholar 

  4. Hatsukami, T. S., Primozich, J., Zierler, R. E., and Strandness, D. E., Jr., Color Doppler characteristics in normal lower extremity arteries. Ultrasound Med. Biol. 18(2):167–171, 1992.

    Article  CAS  PubMed  Google Scholar 

  5. Melillo, P., Orrico, A., Scala, P., Crispino, F., and Pecchia, L., Cloud-based smart health monitoring system for automatic cardiovascular and fall risk assessment in hypertensive patients. J. Med. Syst. 39:109, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Molinari, F., Zeng, G., and Suri, J. S., Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. J. Med. Syst. 35:905–919, 2011.

    Article  PubMed  Google Scholar 

  7. Loizou, C. P., Kasparis, T., Lazarou, T., Pattichis, C. S., and Pantziaris, M., Manual and automated intima-media thickness and diameter measurements of the common carotid artery in patients with renal failure disease. Comput. Biol. Med. 53:220–229, 2014.

    Article  PubMed  Google Scholar 

  8. Fei, D. Y., Liu, D. D., Fu, C. T., Makhoul, R. G., and Fisher, M. R., Feasibility of angle independent Doppler color imaging for in vivo application: Preliminary study on carotid arteries. Ultrasound Med. Biol. 23(1):59–67, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Jmor, S., El-Atrozy, T., Griffin, M., Tegos, T., Dhanjil, S., and Nicolaides, A., Grading internal carotid artery stenosis using B-mode ultrasound (in vivo study). Eur. J. Vasc. Endovasc. Surg. 18(4):315–322, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Bonanno, L., Marino, S., Bramanti, P., and Sottile, F., Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis. Ultrasound Med. Biol. 41(2):509–516, 2015.

    Article  PubMed  Google Scholar 

  11. Santos, A. M. F., Santos, R. M. D., Castro, P. M. A. C., Azevedo, E., Sousa, L., and Tavares, J. M. R. S., A novel automatic algorithm for the segmentation of the lumen of the carotid artery in ultrasound B-mode images. Expert Syst. Appl. 40(16):6570–6579, 2013.

    Article  Google Scholar 

  12. Mougiakakou, S. G., Golemati, S., Gousias, I., Nicolaides, A. N., and Nikita, K. S., Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws’ texture and neural networks. Ultrasound Med. Biol. 33(1):26–36, 2007.

    Article  PubMed  Google Scholar 

  13. Rossi, A. C., Brands, P. J., and Hoeks, A. P. G., Automatic recognition of the common carotid artery in longitudinal ultrasound B-mode scans. Med. Image Anal. 12:653–665, 2008.

    Article  PubMed  Google Scholar 

  14. Juanes, J. A., Ruisoto, P., Obeso, J. A., Prats, A., and San-Molina, J., Computer-based visualization system for the study of deep brain structures involved in Parkinson’s disease. J. Med. Syst. 39:151, 2015.

    Article  PubMed  Google Scholar 

  15. Acharya, U. R., Faust, O., Alvin, A. P. C., Sree, S. V., Molinari, F., Saba, L., Nicolaides, A., and Suri, J. S., Symptomatic versus asymptomatic plaque classification in carotid ultrasound. J. Med. Syst. 3:1861–1871, 2012.

    Article  Google Scholar 

  16. Angulo, J., Geometric algebra colour image representations and derived total orderings for morphological operators – part I: Colour quaternions. J. Vis. Commun. Image Represent 21(1):33–48, 2010.

    Article  Google Scholar 

  17. Angulo, J., and Serra, J., Modelling and segmentation of colour images in polar representations. Image Vis. Comput. 25(4):475–495, 2007.

    Article  Google Scholar 

  18. Zenzo, S. D., A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33(1):116–125, 1986.

    Article  Google Scholar 

  19. Sochen, N., and Zeevi, Y.Y., Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space, 1998 Proc of the Int Conf on Img Proc, pp. 1:166–170, 1998.

  20. Sochen, N., Kimmel, R., and Malladi, R., A general framework for low level vision. IEEE Trans. Image Process. 7(3):310–318, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Sangwine, S. J., Fourier transforms of colour images using quaternion, or hypercomplex, numbers. Electron. Lett. 32(21):1979–1980, 1996.

    Article  Google Scholar 

  22. Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., Gosselin, B., and Dutoit, T., RARE2012:A multi-scaler rarity-based saliency detection with its comparative statistical analysis. Signal Process. Image Commun. 28(6):642–658, 2013.

    Article  Google Scholar 

  23. Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., and Vilariño, F., WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43:99–111, 2015.

    Article  PubMed  Google Scholar 

  24. Chen, Y., Pan, Y., Song, M., and Wang, M., Improved seam carving combining with 3D saliency for image retargeting. Neurocomputing 151:645–653, 2015.

    Article  Google Scholar 

  25. Sangwine, S. J., Colour image edge detector based on quaternion convolution. Electron. Lett. 34(10):969–971, 1998.

    Article  Google Scholar 

  26. Borji, A., and Itti, L., State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1):185–207, 2012.

    Article  Google Scholar 

  27. Mehmood, I., Sajjad, M., Ejaz, W., and Baik, S. W., Saliency-directed prioritization of visual data in wireless surveillance networks. Inf. Fusion 24:16–30, 2015.

    Article  Google Scholar 

  28. Zhao, J., Chen, Y., Feng, H., Xu, Z., and Li, Q., Infrared image enhancement through saliency feature analysis based on multi-scale decomposition. Infrared Phys. Technol. 62:86–93, 2014.

    Article  Google Scholar 

  29. Wu, J., Qi, F., Shi, G., and Lu, Y., Non-local spatial redundancy reduction for bottom-up saliency estimation. J. Vis. Commun. Image Represent. 23(7):1158–1166, 2012.

    Article  Google Scholar 

  30. Itti, L., Automatic Foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13(10):1304–1318, 2004.

    Article  PubMed  Google Scholar 

  31. Itti, L., Koch, C., and Niebur, E., A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11):1254–1259, 1998.

    Article  Google Scholar 

  32. Koch, C., and Ullman, S., Shifts in selective visual attention: Towards the underlying neural circuitry. Hum. Neurobiol. 4:219–227, 1985.

    CAS  PubMed  Google Scholar 

  33. Treisman, A. M., and Gelade, G., A feature integration theory of attention. Cogn. Psychol. 12:97–136, 1980.

    Article  CAS  PubMed  Google Scholar 

  34. Kutbay, U., and Hardalaç, F., CT liver tissue segmentation using distance regularized level set evolution based on spatial fuzzy clustering. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 29(2):715–720, 2012.

    Google Scholar 

  35. Osher, S., and Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1):12–49, 1988.

    Article  Google Scholar 

  36. Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour models. Int. J. Comput. Vis. 1(4):321–331, 1987.

    Article  Google Scholar 

  37. Xu, C., and Prince, J. L., Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3):359–369, 1998.

    Article  CAS  PubMed  Google Scholar 

  38. Li, C., Kao, C. Y., Gore, J. C., and Ding, Z., Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10):1940–1949, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cremers, D., A multiphase levelset framework for variational motion segmentation. Scale Space Meth. Comput. Vis. 2695:599–614, 2003.

    Article  Google Scholar 

  40. Paragios, N., and Deriche, R., Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3):266–280, 2000.

    Article  Google Scholar 

  41. Ahmed, M. N., Yamany, Y. M., Mohamed, N., Farag, A. A., and Moriarty, T., A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3):193–199, 2002.

    Article  PubMed  Google Scholar 

  42. Hardalac, F., Basaranoglu, M., Yüksel, M., Kutbay, U., et al., The rate of mucosal healing by azathioprine therapy and prediction by artificial systems. Turk. J. Gastroenterol. 26(4):315–321, 2015.

    Article  PubMed  Google Scholar 

  43. Cheng, D. C., Schmidt-Trucksäss, A., Liu, C. H., and Liu, S. H., Automated detection of the arterial inner walls of the common carotid artery based on dynamic B-mode signals. Sensors 10(12):10601–10619, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was partially performed at Fırat University, Faculty of Medicine, and the computer-based study was performed at Gazi University, Engineering Faculty, Electrical & Electronics Engineering Department. In addition, the algorithms performed were obtained from the Ph.D. thesis of Uğurhan KUTBAY, which was supervised by Fırat HARDALAÇ.

Authors’ contributions

Selami SERHATLIOĞLU performed the US Doppler studies in the hospital, discussed & reported the US Doppler Images, participated in the sequence alignment and drafted the manuscript with Ünsal AKASLAN. Mehmet AKBULUT performed the Digital Subtraction Angiography (DSA), and evaluated the computer-aided results at the hospital. Fırat HARDALAÇ created the study hypothesis with Uğurhan KUTBAY and helped to draft the manuscript. Uğurhan KUTBAY participated in the alignment sequence and evaluated the algorithms. ll authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fırat Hardalaç.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interests.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutbay, U., Hardalaç, F., Akbulut, M. et al. A Computer-Aided Diagnosis System for Measuring Carotid Artery Intima-Media Thickness (IMT) Using Quaternion Vectors. J Med Syst 40, 149 (2016). https://doi.org/10.1007/s10916-016-0507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0507-4

Keywords

Navigation