Skip to main content
Log in

Using Literature-Based Discovery to Explain Adverse Drug Effects

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

We report on our research in using literature-based discovery (LBD) to provide pharmacological and/or pharmacogenomic explanations for reported adverse drug effects. The goal of LBD is to generate novel and potentially useful hypotheses by analyzing the scientific literature and optionally some additional resources. Our assumption is that drugs have effects on some genes or proteins and that these genes or proteins are associated with the observed adverse effects. Therefore, by using LBD we try to find genes or proteins that link the drugs with the reported adverse effects. These genes or proteins can be used to provide insight into the processes causing the adverse effects. Initial results show that our method has the potential to assist in explaining reported adverse drug effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakaeda, T., Tamon, A., Kadoyama, K., and Okuno, Y., Data mining of the public version of the FDA adverse event reporting system. Int. J. Med. Sci. 10:796–803, 2013. doi:10.7150/ijms.6048.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Avillach, P., Dufour, J.-C., Diallo, G., et al., Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project. J. Am. Med. Inform. Assoc. 20:446–52, 2013. doi:10.1136/amiajnl-2012-001083.

    Article  PubMed  Google Scholar 

  3. Warrer, P., Hansen, E. H., Juhl-Jensen, L., and Aagaard, L., Using text-mining techniques in electronic patient records to identify ADRs from medicine use. Br. J. Clin. Pharmacol. 73:674–84, 2012. doi:10.1111/j.1365-2125.2011.04153.x.

    Article  PubMed  Google Scholar 

  4. Li, Y., Ryan, P. B., Wei, Y., and Friedman, C., A method to combine signals from spontaneous reporting systems and observational healthcare data to detect adverse drug reactions. Drug Saf. 38:895–908, 2015. doi:10.1007/s40264-015-0314-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benton, A., Ungar, L., Hill, S., et al., Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J. Biomed. Inform. 44:989–96, 2011. doi:10.1016/j.jbi.2011.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Freifeld, C. C., Brownstein, J. S., Menone, C. M., et al., Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Saf. 37:343–350, 2014. doi:10.1007/s40264-014-0155-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swanson, D. R., Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect. Biol. Med. 30:7–18, 1986.

    Article  CAS  PubMed  Google Scholar 

  8. Hristovski, D., Rindflesch, T., and Peterlin, B., Using literature-based discovery to identify novel therapeutic approaches. Cardiovasc. Hematol. Agents Med. Chem. 11:14–24, 2013.

    Article  CAS  PubMed  Google Scholar 

  9. Hristovski, D., Kastrin, A., Peterlin, B., and Rindflesch, T. C., Combining Semantic Relations and DNA Microarray Data for Novel Hypotheses Generation. Link Lit. Inf. Knowl. Biol. 6004(Str):53–61, 2010. doi:10.1007/978-3-642-13131-8.

    Article  Google Scholar 

  10. Hristovski, D., Dinevski, D., Kastrin, A., and Rindflesch, T. C., Biomedical question answering using semantic relations. BMC Bioinform. 16:6, 2015. doi:10.1186/s12859-014-0365-3.

    Article  Google Scholar 

  11. Hristovski D., SemBT. http://sembt.mf.uni-lj.si. 2009.

  12. Rindflesch, T. C., and Fiszman, M., The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J. Biomed. Inform. 36:462–77, 2003. doi:10.1016/j.jbi.2003.11.003.

    Article  PubMed  Google Scholar 

  13. Liverani, E., Leonardi, F., Castellani, L., et al., Asymptomatic and persistent elevation of pancreatic enzymes in an ulcerative colitis patient. Case Rep. Gastrointest. Med. 2013:415619, 2013. doi:10.1155/2013/415619.

    PubMed  PubMed Central  Google Scholar 

  14. Ventrucci, M., Pezzilli, R., Naldoni, P., et al., Serum pancreatic enzyme behavior during the course of acute pancreatitis. Pancreas 2:506–9, 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Schmitz-Moormann, P., Comparative radiological and morphological study of the human pancreas. IV. acute necrotizing pancreatitis in man. Pathol. Res. Pract. 171:325–35, 1981. doi:10.1016/S0344-0338(81)80105-7.

    Article  CAS  PubMed  Google Scholar 

  16. Magos, L., Cikrt, M., and Snowden, R., The dependence of biliary methylmercury secretion on liver GSH and ligandin. Biochem. Pharmacol. 34:301–5, 1985.

    Article  CAS  PubMed  Google Scholar 

  17. Schoenberg, M. H., Büchler, M., Pietrzyk, C., et al., Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas 10:36–43, 1995.

    Article  CAS  PubMed  Google Scholar 

  18. Akai, S., Hosomi, H., Minami, K., et al., Knock down of gamma-glutamylcysteine synthetase in rat causes acetaminophen-induced hepatotoxicity. J. Biol. Chem. 282:23996–4003, 2007. doi:10.1074/jbc.M702819200.

    Article  CAS  PubMed  Google Scholar 

  19. Kuhn, J. G., Pharmacology of irinotecan. Oncology (Williston Park) 12:39–42, 1998.

    CAS  Google Scholar 

  20. Xu, J.-M., Wang, Y., Ge, F.-J., et al., Severe irinotecan-induced toxicity in a patient with UGT1A1 28 and UGT1A1 6 polymorphisms. World J. Gastroenterol. 19:3899–903, 2013. doi:10.3748/wjg.v19.i24.3899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stock, J., Statin-associated muscle symptoms EAS Consensus Panel paper focuses on this neglected patient group. Atherosclerosis 242:346–50, 2015. doi:10.1016/j.atherosclerosis.2015.06.049.

    Article  CAS  PubMed  Google Scholar 

  22. Niemi, M., Transporter pharmacogenetics and statin toxicity. Clin. Pharmacol. Ther. 87:130–3, 2010. doi:10.1038/clpt.2009.197.

    Article  CAS  PubMed  Google Scholar 

  23. Schröder, J. P., Mau, W., Schumacher, S., and Zierz, S., Abnormal regulation of carnitine palmitoyltransferase in monozygotic twins as the cause of rhabdomyolysis. Dtsch. Med. Wochenschr. 115:337–9, 1990. doi:10.1055/s-2008-1065012.

    Article  PubMed  Google Scholar 

  24. Roglans, N., Sanguino, E., Peris, C., et al., Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J. Pharmacol. Exp. Ther. 302:232–9, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Keverline, J. P., Recurrent rhabdomyolysis associated with influenza-like illness in a weight-lifter. J. Sports Med. Phys. Fitness 38:177–9, 1998.

    CAS  PubMed  Google Scholar 

  26. Yang, S.-H., Choi, J.-S., and Choi, D.-H., Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of losartan and its main metabolite EXP-3174 in rats: possible role of CYP3A4 and P-gp inhibition by HMG-CoA reductase inhibitors. Pharmacology 88:1–9, 2011. doi:10.1159/000328773.

    Article  CAS  PubMed  Google Scholar 

  27. Dopazo, C., Bilbao, I., Lázaro, J. L., et al., Severe rhabdomyolysis and acute renal failure secondary to concomitant use of simvastatin with rapamycin plus tacrolimus in liver transplant patient. Transplant. Proc. 41:1021–4, 2009. doi:10.1016/j.transproceed.2009.02.019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the U.S. National Institutes of Health, National Library of Medicine. Authors would like to thank Celine Narjoz and Marie-Anne Loriot for suggesting the additional adverse drug reactions, which we used in this study. We are also grateful for the contribution of the medical students (Faculty of Medicine, University of Maribor) in the evaluation of the extracted relations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar Hristovski.

Additional information

This article is part of the Topical Collection on Education & Training.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hristovski, D., Kastrin, A., Dinevski, D. et al. Using Literature-Based Discovery to Explain Adverse Drug Effects. J Med Syst 40, 185 (2016). https://doi.org/10.1007/s10916-016-0544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0544-z

Keywords

Navigation