Skip to main content
Log in

Characterizing Architectural Distortion in Mammograms by Linear Saliency

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Architectural distortion (AD) is a common cause of false-negatives in mammograms. This lesion usually consists of a central retraction of the connective tissue and a spiculated pattern radiating from it. This pattern is difficult to detect due the complex superposition of breast tissue. This paper presents a novel AD characterization by representing the linear saliency in mammography Regions of Interest (ROI) as a graph composed of nodes corresponding to locations along the ROI boundary and edges with a weight proportional to the line intensity integrals along the path connecting any pair of nodes. A set of eigenvectors from the adjacency matrix is then used to extract discriminant coefficients that represent those nodes with higher salient lines. A dimensionality reduction is further accomplished by selecting the pair of nodes with major contribution for each of the computed eigenvectors. The set of main salient lines is then assembled as a feature vector that inputs a conventional Support Vector Machine (SVM). Experimental results with two benchmark databases, the mini-MIAS and DDSM databases, demonstrate that the proposed linear saliency domain method (LSD) performs well in terms of accuracy. The approach was evaluated with a set of 246 RoI extracted from the DDSM (123 normal tissues and 123 AD) and a set of 38 ROI from the mini-MIAS collections (19 normal tissues and 19 AD) respectively. The classification results showed respectively for both databases an accuracy rate of 89 % and 87 %, a sensitivity rate of 85 % and 95 %, and a specificity rate of 93 % and 84 %. Likewise, the area under curve (A z ) of the Receiver Operating Characteristic (ROC) curve was 0.93 for both databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://marathon.csee.usf.edu/Mammography/Database.html.

  2. http://peipa.essex.ac.uk/info/mias.html.

References

  1. American Cancer Society: Breast Cancer: Tech. rep. American Cancer Society, Atlanta (2015)

  2. Ayres, F. J., and Rangayyan, R. M., Characterization of architectural distortion in mammograms. IEEE Enginering in Medicine and Biology Magazine,59–67, 2005.

  3. Ayres, F. J., and Rangayyan, R. M., Reduction of false positives in the detection of architectural distortion in mammograms by using a geometrically constrained phase portrait model. International Journal of Computer Assisted Radiology and Surgery 1:361–369, 2007.

    Article  Google Scholar 

  4. Baker, J. A., Rosen, E. L., Lo, J. Y., Gimenez, E. I., Walsh, R., Soo, M. S., Computer-Aided detection (CAD) in screening mammography: Sensitivity of commercial CAD systems for detecting architectural distortion. American Journal of Roentgenology 181(4):1083–1088, 2003.

    Article  PubMed  Google Scholar 

  5. Banik, S. M., Rangayyan, R., Desautels, J. E. L., Detection of Architectural Distortion in Prior Mammograms. IEEE Transactions on Medical Imaging 30(2):279–294, 2011.

    Article  PubMed  Google Scholar 

  6. Bird, R., Wallace, T., Yankaskas, B., Analysis of cancers missed at screening mammography. Radiology 178:234–247, 1992.

    Google Scholar 

  7. Biswas, S. K., and Mukherjee, D. P., Recognizing architectural distortion in mammogram: a multiscale texture modeling approach with GMM. IEEE Transactions on Biomedical Engineering 58(7):2023–2030, 2011.

    Article  PubMed  Google Scholar 

  8. Bovik, A. C., Huang, T. S., Munson Jr, D. C., A generalization of median filtering using linear combinations of order statistics. IEEE Transactions on Acoustics, Speech and Signal Processing 31(6):1342–1350, 1983.

    Article  Google Scholar 

  9. Chang, C. C., and Lin, C. J., LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(27):1–27, 2011.

    Article  Google Scholar 

  10. Chiarelli, A. M., Edwards, S. A., Prummel, M. V., Muradali, D., Majpruz, V., Done, S. J., Brown, P., Shumak, R. S., Yaffe, M. J., Digital compared with Screen-Film mammography: Performance measures in concurrent cohorts within an organized breast screening program. Radiology 268(3):684–693, 2013.

    Article  PubMed  Google Scholar 

  11. Cortes, C., and Vapnik, V., Support-Vector Networks. Mach. Learn. 20 (3): 273–297, 1995. doi:10.1023/A:1022627411411.

    Google Scholar 

  12. Freeman, L. C., Centrality in social networks: Conceptual clarification. Social Networks 1:215–239, 1979.

    Article  Google Scholar 

  13. Gopalakrishnan, V., Hu, Y., Rajan, D., Random Walks on Graphs for Salient Object Detection in Images. IEEE Transactions on Image processing 19:3232–3242, 2010.

    Article  PubMed  Google Scholar 

  14. Guo, Q., Shao, J., Ruiz, V., Investigation of support vector machine for the detection of architectural distortion in mammographic images. Journal of Physics 15:88–94, 2005.

    Google Scholar 

  15. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W. P.: The Digital Database for Screening Mammography. In: Proceedings of the Fifth International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing, M.J. Yaffe (2001)

  16. Horsch, A., Hapfelmeier, A., Elter, M., Needs assessment for next generation computer-aided mammography reference image databases and evaluation studies. International Journal of Computer Assisted Radiology and Surgery 6(6):749–767, 2011.

    Article  PubMed  Google Scholar 

  17. Ichikawa, T., Matsubara, T., Hara, T., Fujita, H., Endo, T., Iwase, T.: Automated detection method for architectural distorion areas on mammograms based on morphological processing and surface analysis. In: Processing, I. (Ed.) Medical imaging, Vol. 5370 (2004)

  18. Kamra, A., Jain, V. K., Singh, S., Mittal, S., Characterization of Architectural Distortion in Mammograms Based on Texture Analysis Using Support Vector Machine Classifier with Clinical Evaluation. Journal of Digital Imaging,1–11, 2015. doi:10.1007/s10278-015-9807-3.

  19. Karssemeijer, N., and Te Brake, G. M., Detection of stellate distortions in mammograms. IEEE Transactions on Medical Imaging 15(5):611–619, 1996.

    Article  CAS  PubMed  Google Scholar 

  20. Lei, T., and Sewchand, W., Statistical approach to X-ray CT imaging and its applications in image analysis. II . A new stochastic model-based image segmentation technique for X-ray CT image. IEEE Transactions on Medical Imaging 11(1):62–69, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. Matsubara, T., Ito, A., Tsunomori, A., Hara, T., Muramatsu, C., Endo, T., Fujita, H.: An automated method for detecting architectural distortions on mammograms using direction analysis of linear structures. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. doi:10.1109/EMBC.2015.7318939 10.1109/EMBC.2015.7318939, pp. 2661–2664 (2015)

  22. Morton, M. J., Whaley, D. H., Brandt, K. R., Amrami, K. K., Screening Mammograms: Interpretation with Computer aided Detection Prospective Evaluation. Radiology 239(2):375–383, 2006. doi:10.1148/radiol.2392042121.

    Article  PubMed  Google Scholar 

  23. Moura, D. C., and Guevara López, M. A., An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. International journal of computer assisted radiology and surgery 8(4):561–574, 2013. doi:10.1007/s11548-013-0838-2. http://www.ncbi.nlm.nih.gov/pubmed/23580025.

    Article  PubMed  Google Scholar 

  24. Narváez, F., Díaz, G., Gómez, F., Romero, E.: A content-based retrieval of mammographic masses using the curvelet descriptor. In: Proceedings of the SPIE, Vol. 8315, pp. 83,150A–83,150A–7 (2012), 10.1117/12.911680

  25. Narváez, F., and Romero, E.: Breast mass classification using orthogonal moments. In: Maidment, S., Andrew, D. A., Bakic, P. R., Gavenonis, S. (Eds.) Breast Imaging, lecture no edn., pp. 64–71. Springer (2012), 10.1007/978-3-642-31271-7_9

  26. Nemoto, M., Honmura, S., Shimizu, A., Furukawa, D., Kobatake, H., Nawano, S., A pilot study of architectural distortion detection in mammograms based on characteristics of line shadows. International Journal of Computer Assisted Radiology and Surgery 4(1):27–36, 2009.

    Article  PubMed  Google Scholar 

  27. Nithya, R., and Santhi, B., Computer Aided Diagnosis System for Mammogram Analysis: A Survey. Journal of Medical Imaging and Health Informatics 5(4):653–674, 2015. doi:10.1166/jmihi.2015.1441.

    Article  Google Scholar 

  28. Parr, T. C., Taylor, C. J., Astley, S. M., Boggis, C. R. M., Statistical modeling of oriented line patterns in mammograms, pp. 44–55: International society for optics and photonics, 1997.

  29. Pisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K., Braeuning, M. P., Pizer, S. M., Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging 11:193– 200, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rangayyan, R., Banik, S., Desautels, J., Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer. Journal of Digital Imaging 23(5):611–631, 2010. doi:10.1007/s10278-009-9257-x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rangayyan, R. M., Chakraborty, J., Banik, S., Mukhopadhyay, S., Desautels, J. E. L., Detection of Architectural Distortion Using Coherence in Relation to the Expected Orientation of Breast Tissue. IEEE Transactions on CBMS 2:1–4, 2012.

    Google Scholar 

  32. Rao, A. R., and Jain, R. C., Computerized flow field analysis: Oriented texture fields. IEEE Trans. Pattern Anal. Mach. Intell. 14(7):693–709, 1992.

    Article  Google Scholar 

  33. Redondo, A., Comas, M., Maciȧ, F., Ferrer, F., Murta-Nascimento, C., Maristany, M. T., Molins, E., Sala, M., Castells, X., Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. The British journal of radiology 85(1019):1465–1470, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sampat, M. P., Markey, M. K., Bovik, A. C.: Measurement and detection of spiculated lesions. In: Image analysis and interpretation, pp. 105–109 (2006)

  35. Sampat, M. P., Whitman, G. J., Markey, M. K., Bovik, A. C., Evidence based detection of spiculated masses and architectural distortions, pp. 26–37: International society for optics and photonics, 2005, 2005.

  36. Sickles, E. A., DȮrsi, C. J., Bassett, L. W., Al., E., ACR BI-RADS Mammography. 5th edit edn. Reston, VA: American College of Radiology, 2013.

    Google Scholar 

  37. Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Others: The Mammographic Image Analysis Society Digital Mammogram Database. In: Series, I.c. (Ed.) exerpta medica, Vol. 1069, pp. 375–378 (1994)

  38. Tabar, L., Yeng, M. F., Vitak, B., Cheng, H. H. T., Smith, R. A., Duffy, S. W., Mammography service screening and mortality in breast cancer patients: 20-year follow ∖-up before and after introduction of screening. Lacent 361:1405–1410, 2003.

    Google Scholar 

  39. Tourassi, G. D., Delong, D. M., Floyd, C. E., A study on the computerized fractal analysis of architectural distortion in screening mammograms. Physics in Medicine and Biology 51(5):1299–1312, 2006.

    Article  PubMed  Google Scholar 

  40. Zhang, X., A New Ensemble Learning Approach for Microcalcification Clusters Detection. Journal of Software 4(9):1014–2021, 2009.

    Article  Google Scholar 

  41. Zwiggelaar, R., Astley, S. M., Boggis, C. R. M., Taylor, C. J., Linear structures in mammographic images: Detection and classification. IEEE Transactions on Medical Imaging 23(9):1077–1086, 2004.

    Article  PubMed  Google Scholar 

  42. Zwiggelaar, R., Parr, T. C., Schumm, J. E., Hutt, I. W., Taylor, C. J., Astley, S. M., Boggis, C. R. M., Model-based detection of spiculated lesions in mammograms. Medical Image Analysis 3(1):39–62, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ecuadorian government through ”La Secretaría de Educación Superior, Ciencia, Tecnología e Innovacion (SENESCYT)”, [Grant number: 20110958, 2011].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Romero.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narváez, F., Alvarez, J., Garcia-Arteaga, J.D. et al. Characterizing Architectural Distortion in Mammograms by Linear Saliency. J Med Syst 41, 26 (2017). https://doi.org/10.1007/s10916-016-0672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0672-5

Keywords

Navigation