Skip to main content

Advertisement

Log in

A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kang, J., Lee, J. Y, Yoo, Y., A new feature-enhanced speckle reduction method based on multiscale analysis for ultrasound b-mode imaging. IEEE Transactions on Biomedical Engineering 63(6):1178–1191, 2016. ISSN 0018-9294. doi:10.1109/TBME.2015.2486042.

    Article  PubMed  Google Scholar 

  2. Yue, Y., Croitoru, M. M, Bidani, A., Zwischenberger, J. B, Clark, J. W, Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE Transactions on Medical Imaging 25(3):297–311, 2006. ISSN 0278-0062. doi:10.1109/TMI.2005.862737.

    Article  PubMed  Google Scholar 

  3. Lee, J. S, Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-2(2):165–168, 1980. ISSN 0162-8828. doi:10.1109/TPAMI.1980.4766994.

    Article  Google Scholar 

  4. Frost, V. S, Stiles, J. A, Shanmugan, K. S, Holtzman, J. C, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(2):157–166, 1982. ISSN 0162-8828. doi:10.1109/TPAMI.1982.4767223.

    Article  Google Scholar 

  5. Kuan, D. T, Sawchuk, A. A, Strand, T. C, Chavel, P., Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7(2):165–177, 1985. ISSN 0162-8828. doi:10.1109/TPAMI.1985.4767641.

    Article  Google Scholar 

  6. Lopes, A., Nezry, E., Touzi, R., Laur, H.: Maximum a posteriori speckle filtering and first order texture models in sar images. In: Geoscience and Remote Sensing Symposium, 1990. IGARSS’90. ’Remote Sensing Science for the Nineties’., 10th Annual International. doi:10.1109/IGARSS.1990.689026, pp. 2409–2412 (1990)

  7. Yu, Y., and Acton, S. T, Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 11(11):1260–1270, 2002. ISSN 1057-7149. doi:10.1109/TIP.2002.804276.

    Article  PubMed  Google Scholar 

  8. Aja-Fernandez, S., and Alberola-Lopez, C., On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing 15(9):2694–2701, 2006. ISSN 1057-7149. doi:10.1109/TIP.2006.877360.

  9. Krissian, K., Westin, C. F, Kikinis, R., Vosburgh, K. G, Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 16(5):1412–1424, 2007. ISSN 1057-7149. doi:10.1109/TIP.2007.891803.

    Article  PubMed  Google Scholar 

  10. Coupe, P., Hellier, P., Kervrann, C., Barillot, C., Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing 18(10):2221–2229, 2009. ISSN 1057-7149.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pei, S.-C., Tseng, C.-C., Yang, W.-S., Fir filter designs with linear constraints using the eigenfilter approach. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(2):232–237, 1998. ISSN 1057-7130. doi:10.1109/82.661658.

    Article  Google Scholar 

  12. Tkacenko, A., Vaidyanathan, P. P, Nguyen, T., On the eigenfilter design method and its applications: A tutorial. IEEE Transaction on Circuits and Systems 50:497–517, 2003.

    Google Scholar 

  13. Vaidyanathan, P. P, and Nguyen, T., Eigenfilters: A new approach to least squares FIR filter design and applications including Nyquist filters. IEEE Transaction on Circuits and Systems 34(1):11–23, 1987.

    Article  Google Scholar 

  14. Pei, S.-C., and Shyu, J.-J., Design of 2d fir digital filters by mcclellan transformation and least squares eigencontour mapping. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40(9): 546–555, 1993. ISSN 1057-7130. doi:10.1109/82.257332.

    Article  Google Scholar 

  15. Mersereau, R., Mecklenbrauker, W., Quatieri, T., Mcclellan transformation for 2D filtering I-design. IEEE Transactions on Circuits and Systems 23(7):405–414, 1976.

    Article  Google Scholar 

  16. Karam, L. J, Two-dimensional fir filter design by transformation. IEEE Transactions on Signal Processing 47(5):1474–1478, 1999. ISSN 1053-587X. doi:10.1109/78.757246.

    Article  Google Scholar 

  17. Psarakis, E. Z, Mertzios, V. G, Alexiou, G. P, Design of two-dimensional zero phase fir fan filters via the mcclellan transform. IEEE Transactions on Circuits and Systems 37(1):10–16, 1990. ISSN 0098-4094. doi:10.1109/31.45686.

    Article  Google Scholar 

  18. Psarakis, E. Z, and Moustakides, G. V, Design of two-dimensional zero-phase fir filters via the generalized mcclellan transform. IEEE Transactions on Circuits and Systems 38(11):1355–1363, 1991. ISSN 0098-4094. doi:10.1109/31.99164.

    Article  Google Scholar 

  19. Wei, D., Evans, B. L, Bovik, A. C, Loss of perfect reconstruction in multidimensional filterbanks and wavelets designed via extended mcclellan transformations. IEEE Signal Processing Letters 4(10):295–297, 1997. ISSN 1070-9908. doi:10.1109/97.633773.

    Article  Google Scholar 

  20. Patwardhan, P., Patil, B., Gadre, V., Polyphase conditions and structures for 2D quincunx FIR filter banks having quadrantal or diagonal symmetries. IEEE Transactions on Circuits and Systems II 54(9):790–794, 2007.

    Article  Google Scholar 

  21. Bolle, M.: Wave digital filters for the migration of seismic data. In: 1994. ICASSP-94., 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume vi, pages VI/5? VI/8 vol.6. doi:10.1109/ICASSP.1994.389909 (1994)

  22. Tay, D. B. H, and Kingsbury, N., Flexible design of multidimensional perfect reconstruction FIR 2-band filter-banks using transformation of variables. IEEE Transactions on Image Processing,2, 1993.

  23. Kovacevic, J., and Vetterli, M., Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases of R n. IEEE Transactions on Information Theory 38(2):533–555 , 1992.

    Article  Google Scholar 

  24. Patwardhan, P., and Gadre, V., Design of 2D M-th band lowpass FIR eigenfilters with symmetries. IEEE Signal Processing Letters 14(8):517–520, 2007.

    Article  Google Scholar 

  25. Nagare, M. B, Patil, B. D, Holambe, R. S: Design of two-dimensional quincunx fir filter banks using eigen filter approach. IEEE International Conference on Signal and Information Processing (ICONSIP), Accepted for publication (2016)

  26. Patil, B., Patwardhan, P., Gadre, V.: Eigenfilter approach to the design of one-dimensional and multidimensional two-channel linear phase FIR perfect reconstruction filter banks. IEEE Transactions on Circuit and Systems Vol-I (2008)

  27. Pei, S., and Shyu, J., 2D FIR eigenfilters: A least-squares approach. IEEE Transaction on Circuits and Systems 37:24–34, 1990.

    Article  Google Scholar 

  28. Eslami, R., and Radha, H., Translation-invariant contourlet transform and its application to image denoising. IEEE Transactions on Image Processing 15(11):3362–3374, 2006. ISSN 1057-7149. doi:10.1109/TIP.2006.881992.

    Article  PubMed  Google Scholar 

  29. Lu, Y. M, and Do, M. N, Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image Processing 16(4):918–931, 2007.

    Article  PubMed  Google Scholar 

  30. Vikhe, P. S, and Thool, V. R, Mass detection in mammographic images using wavelet processing and adaptive threshold technique. Journal of Medical Systems 40(4):82, 2016. ISSN 1573-689X. doi:10.1007/s10916-016-0435-3.

  31. Olfa, M., and Nawres, K.: Ultrasound image denoising using a combination of bilateral filtering and stationary wavelet transform. In: 2014 First International Image Processing, Applications and Systems Conference (IPAS). doi:10.1109/IPAS.2014.7043258, pp. 1–5 (2014)

  32. Eslami, R., and Radha, H., A new family of nonredundant transforms using hybrid wavelets and directional filter banks. IEEE Transactions on Image Processing 16(4):1152–1167, 2007.

    Article  PubMed  Google Scholar 

  33. Bamberger, R. H, and Smith, M. J. T, A filter bank for the directional decomposition of images: theory and design. IEEE Transactions on Signal Processing 40(4):882–893, 1992. ISSN 1053-587X. doi:10.1109/78.127960.

    Article  Google Scholar 

  34. Bamber, J. C, and Daft, C., Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images. Ultrasonics 24(1):41 – 44, 1986. ISSN 0041-624X. doi:10.1016/0041-624X(86)90072-7.

    Article  CAS  PubMed  Google Scholar 

  35. Do, M. N, and Vetterli, M., Framing pyramids. IEEE Transactions on Signal Processing 51(9):2329–2342, 2003. ISSN 1053-587X. doi:10.1109/TSP.2003.815389.

    Article  Google Scholar 

  36. Chang, S. G, Yu, B., Vetterli, M., Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 9(9):1532–1546, 2000. ISSN 1057-7149. doi:10.1109/83.862633.

    Article  CAS  PubMed  Google Scholar 

  37. Strang, G., and Nguyen, T., , Wavelets and filter banks. Cambridge NY: Wellesley, 1996.

    Google Scholar 

  38. Eslami, R., and Radha, H., Design of regular wavelets using a three-step lifting scheme. IEEE Transactions on Signal Processing 58(4):2088–2101, 2010.

    Article  Google Scholar 

  39. Rahulkar, A. D, and Holambe, R. S, Partial iris feature extraction and recognition based on a new combined directional and rotated directional wavelet filter banks. Neurocomputing 81:12–23, 2012.

    Article  Google Scholar 

  40. Ramos-Llordén, G., Vegas-Sánchez-Ferrero, G., Martin-Fernandez, M., Alberola-L´opez, C., Aja-Fernández, S., Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transactions on Image Processing 24(1):345–358, 2015. ISSN 1057-7149. doi:10.1109/TIP.2014.2371244.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund B Nagare.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagare, M.B., Patil, B.D. & Holambe, R.S. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction. J Med Syst 41, 31 (2017). https://doi.org/10.1007/s10916-016-0675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0675-2

Keywords

Navigation