Skip to main content

Advertisement

Log in

Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moore, C.C., McVeigh, E.R., and Zerhouni, E.A., Noninvasive measurement of three-dimensional myocardial deformation with tagged magnetic resonance imaging during graded local ischemia. J. Cardiovasc. Magn. Reson. 1(3):207–222, 1999. https://doi.org/10.3109/10976649909088333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawson, J., and Lauterbur, P.C., Magnetic resonance imaging. Scholarpedia. 3(7):3381, revision #123947, 2008. https://doi.org/10.4249/scholarpedia.3381.

    Article  Google Scholar 

  3. Edvardsen, T., Rosen, B.D., Pan, L., Jerosch-Herold, M., Lai, S., Hundley, W.G., Sinha, S., Kronmal, R.A., Bluemke, D.A., and Lima, J.A., Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging-the multi-ethnic study of atherosclerosis (MESA). Am. Heart J. 151(1):109–114, 2006. https://doi.org/10.1016/j.ahj.2005.02.018.

    Article  PubMed  Google Scholar 

  4. Baer, T., Gore, J.C., Boyce, S., and Nye, P.W., Application of MRI to the analysis of speech production. Magn. Reson. Imaging. 5(1):1–7, 1987. https://doi.org/10.1016/0730-725X(87)90477-2.

    Article  CAS  PubMed  Google Scholar 

  5. Juliane, A., Mobile NMR for rock porosity and permeability. Dissertation. RWTH Aachen University, Aachen, Germany, 2007.

  6. Rieu, R., In vivo study of physiological type flow in a bifurcation vascular prosthesis. J. Biomech. 24(10):923–933, 1991. https://doi.org/10.1016/0021-9290(91)90170-R.

    Article  CAS  PubMed  Google Scholar 

  7. Vogt, S. J., Nuclear magnetic resonance studies of biological and biogeochemical processes. Dissertation, Montana State University-Bozeman, 2013.

  8. Awojoyogbe, O.B., A mathematical model of Bloch NMR equations for quantitative analysis of blood flow in blood vessels of changing cross-section I. Physica A. 303:163–175, 2002. https://doi.org/10.1016/S0378-4371(01)00379-X.

    Article  Google Scholar 

  9. Awojoyogbe, O.B., A mathematical model of Bloch NMR equations for quantitative analysis of blood flow in blood vessels with changing cross-section II. Physica A. 323:534–550, 2003. https://doi.org/10.1016/S0378-4371(02)02025-3.

    Article  Google Scholar 

  10. Awojoyogbe, O.B., Analytical solution of the time-dependent Bloch NMR flow equations: A translational mechanical analysis. Physica A. 339(3):437–460, 2004. https://doi.org/10.1016/j.physa.2004.03.061.

    Article  Google Scholar 

  11. Awojoyogbe, O.B., Dada, O.M., Faromika, O.P., and Dada, O.E., Mathematical concept of the Bloch flow equations for general magnetic resonance imaging: A review. Concepts Magn Reson A. 38(3):85–101, 2011. https://doi.org/10.1002/cmr.a.20210.

    Article  Google Scholar 

  12. Gupta, A., Stait-Gardner, T., Ghadirian, B., Price, W.S., Dada, O.M., and Awojoyogbe, O.B., Theory, dynamics and applications of MR imaging-I. Science PG, New York, 2014.

    Google Scholar 

  13. Awojoyogbe, O.B., Dada, O.M., Onwu, O.S., Ige, A.T., and Akinwande, I.N., Computational diffusion magnetic resonance imaging based on time-dependent Bloch NMR flow equation and Bessel functions. J. Med. Syst. 40:106, 2016. https://doi.org/10.1007/s10916-016-0450-4.

    Article  PubMed  Google Scholar 

  14. Dada, O.M., Awojoyogbe, O.B., and Ukoha, A.C., A computational analysis for quantitative evaluation of petrol-physical properties of rock fluids based on Bloch NMR diffusion model for porous media. J. Pet. Sci. Eng. 127:137–147, 2015. https://doi.org/10.1016/j.petrol.2015.01.003.

    Article  CAS  Google Scholar 

  15. Spiegel, M.R., Schaum’s outline series of theory and problems of advanced mathematics for engineers and scientists. McGraw-Hill, Singapore, 1983.

    Google Scholar 

  16. Cowan, B.P., Nuclear magnetic resonance and relaxation, 1st edn. Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  17. Wylie, C.R., and Barrett, C.L., Advanced engineering mathematics, 5th edn. McGrawl – Hill, Tokyo, 1982.

    Google Scholar 

  18. Kreyszig, E., Advanced engineering mathematics, 7th edn. John Wiley and Sons, Singapore, 1996.

    Google Scholar 

  19. Parthasarathy, V., Characterization of harmonic phase MRI: theory, simulations, and applications. Dissertation, The John Hopkins University, 2006.

  20. Price, W.S., Pulsed-field gradient NMR as a tool for studying translational diffusion. Part I. Basic theory. Concepts Magn Reson. 9:299–336, 1997. https://doi.org/10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  21. Price, W.S., NMR studies of translational motion. Cambridge University Press, Cambridge, 2009.

    Book  Google Scholar 

  22. Hergan, K., Schuster, A., Mair, M., Burger, R., and Töpker, M., Normal cardiac diameters in cine-MRI of the heart. RoFo. 176(11):1599–1606, 2004. https://doi.org/10.1055/s-2004-813627.

    Article  CAS  PubMed  Google Scholar 

  23. Osman, N.F., Kerwin, W.S., McVeigh, E.R., and Prince, J.L., Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42:1048–1060, 1999. https://doi.org/10.1002/(SICI)1522-2594(199912)42:6<1048::AID-MRM9>3.0.CO;2-M.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stoeck, C.T., Kalinowska, A., von Deuster, C., Harmer, J., Chan, R.W., Niemann, M., Manka, R., Atkinson, D., Sosnovik, D.E., Mekkaoui, C., and Kozerke, S., Dual-phase cardiac diffusion tensor imaging with strain correction. PLoS One. 9(9):e107159, 2014. https://doi.org/10.1371/journal.pone.0107159.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sung, Y.M., and Yong, H., Myocardial T1 and T2 mappings with automatic motion correction at 3 tesla MR: Comparison of T1 and T2 measurements by breathhold, free-breathing and cardiac cycle. J. Cardiovasc. Magn. Reson. 15(1):P104, 2013. https://doi.org/10.1186/1532-429X-15-S1-P104.

    Article  PubMed Central  Google Scholar 

  26. Camargo, G.C., Rothstein, T., Junqueira, F.P., Fernandes, E., Greiser, A., Strecker, R., Pessoa, V., Lima, R.S., and Gottlieb, I., Comparison of myocardial T1 and T2 values in 3 T with T2* in 1.5 T in patients with iron overload and controls. Int. J. Hematol. 103:530, 2016. https://doi.org/10.1007/s12185-016-1950-1.

    Article  CAS  PubMed  Google Scholar 

  27. Osman, N.F., McVeigh, E.R., and Prince, J.L., Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging. 19(3):186–202, 2000. https://doi.org/10.1109/42.845177.

    Article  CAS  PubMed  Google Scholar 

  28. Atalar, E., and McVeigh, E.R., Optimization of tag thickness for measuring position with magnetic resonance imaging. IEEE Trans Med Imag. 13(1):152–160, 1994. https://doi.org/10.1109/42.276154.

    Article  CAS  Google Scholar 

  29. Young, A.A., and Axel, L., Three-dimensional motion and deformation of the heart wall: Estimation with spatial modulation of magnetization – a model-based approach. Radiology. 185(1):241–247, 1992. https://doi.org/10.1148/radiology.185.1.1523316.

    Article  CAS  PubMed  Google Scholar 

  30. Guttman, M.A., Prince, J.L., and McVeigh, E.R., Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans Med Imag. 13(1):74–88, 1994. https://doi.org/10.1109/42.276146.

    Article  CAS  Google Scholar 

  31. Denney, T.S., Identification of myocardial tags in tagged MR images without prior knowledge of myocardial contours. Proc. Inform .Processing. Med. Imag. 327–340, 1997. https://doi.org/10.1007/3-540-63046-5_25.

  32. Acosta-Martínez, J., López-Haldón, J.E., Gutiérrez-Carretero, E., Díaz-Carrasco, I., Hajam, T.S., and Fernández, A.O., Radial and circumferential strain as markers of fibrosis in an experimental model of myocardial infarction. Rev. Esp. Cardiol. 66(6):508–509, 2013. https://doi.org/10.1016/j.rec.2013.01.009.

    Article  PubMed  Google Scholar 

  33. Nishimura, K., Okayama, H., Inoue, K., Saito, M., Yoshii, T., Hiasa, G., Sumimoto, T., Inaba, S., Ogimoto, A., Funada, J.I., and Higaki, J., Direct measurement of radial strain in the inner-half layer of the left ventricular wall in hypertensive patients. J. Cardiol. 59(1):64–71, 2012. https://doi.org/10.1016/j.jjcc.2011.08.003.

    Article  PubMed  Google Scholar 

  34. Ma, C., Wang, X., and Varghese, T., Segmental analysis of cardiac short-axis views using lagrangian radial and circumferential strain. Ultrason. Imaging. 38(6):363–383, 2016. https://doi.org/10.1177/0161734615613322.

    Article  PubMed  Google Scholar 

  35. Hoit, B.D., Strain and strain rate echocardiography and coronary artery disease. Circ. Cardiovasc. Imaging. 4(2):179–190, 2011. https://doi.org/10.1161/CIRCIMAGING.110.959817.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamidele O. Awojoyogbe.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dada, M.O., Jayeoba, B., Awojoyogbe, B.O. et al. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion. J Med Syst 41, 168 (2017). https://doi.org/10.1007/s10916-017-0816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0816-2

Keywords

Navigation