Abstract
Similarity measurement of lung nodules is a critical component in content-based image retrieval (CBIR), which can be useful in differentiating between benign and malignant lung nodules on computer tomography (CT). This paper proposes a new two-step CBIR scheme (TSCBIR) for computer-aided diagnosis of lung nodules. Two similarity metrics, semantic relevance and visual similarity, are introduced to measure the similarity of different nodules. The first step is to search for K most similar reference ROIs for each queried ROI with the semantic relevance metric. The second step is to weight each retrieved ROI based on its visual similarity to the queried ROI. The probability is computed to predict the likelihood of the queried ROI depicting a malignant lesion. In order to verify the feasibility of the proposed algorithm, a lung nodule dataset including 366 nodule regions of interest (ROIs) is assembled from LIDC-IDRI lung images on CT scans. Three groups of texture features are implemented to represent a nodule ROI. Our experimental results on the assembled lung nodule dataset show good performance improvement over existing popular classifiers.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10916-017-0874-5/MediaObjects/10916_2017_874_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10916-017-0874-5/MediaObjects/10916_2017_874_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10916-017-0874-5/MediaObjects/10916_2017_874_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10916-017-0874-5/MediaObjects/10916_2017_874_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10916-017-0874-5/MediaObjects/10916_2017_874_Fig5_HTML.gif)
Similar content being viewed by others
References
Siegel, R.L., Miller, K.D., and Jemal, A., Cancer statistics, 2015. CA Cancer J Clin. 65:5–29, 2015. https://doi.org/10.3322/caac.21254.
Armato, R.S., Mclennan, G., Bidaut, L., et al., The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 38(2):915–931, 2011. https://doi.org/10.1118/1.3528204.
Huang, P., Park, S., Yan, R., et al., Added value of computer-aided CT image features for early lung cancer diagnosis with small pulmonary nodules: a matched case-control study. Radiology. 5:162725, 2017. https://doi.org/10.1148/radiol.2017162725.
Lu, C., Zhu, Z., and Gu, X., An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method. J Med Syst. 38(9):97–105, 2014. https://doi.org/10.1007/s10916-014-0097-y.
Orozco, H., Villegas, O., Sánchez, V., Domínguez, H., and Alfaro, M., Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. BioMed Eng. 14(1):9, 2015. https://doi.org/10.1186/s12938-015-0003-y.
Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., Zang, Y., and Tian, J., Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61:663–673, 2017. https://doi.org/10.1016/j.patcog.2016.05.029.
Kumar, A., Kim, J., Cai, W., Fulham, M., and Feng, D., Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging. 26:1025–1039, 2013. https://doi.org/10.1007/s10278-013-9619-2.
Gundreddy, R.R., Tan, M., Qiu, Y., Cheng, Liu, H., and Zheng, B., Assessment of performance and reproducibility of applying a content-based image retrieval scheme for classification of breast lesions. Med Phys. 42:4241–4249, 2015. https://doi.org/10.1118/1.4922681.
Jiang, M., Zhang, S., Li, H., and Metaxas, D.N., Computer-aided diagnosis of mammographic masses using scalable image retrieval. IEEE T Biomed Eng. 62(2):783–791, 2015. https://doi.org/10.1109/TBME.2014.2365494.
Tsochatzidis, L., Zagoris, K., Arikidis, N., et al., Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recogn. 71:106–117, 2017. https://doi.org/10.1016/j.patcog.2017.05.023.
Dubey, S.R., Singh, S.K., and Singh, R.K., Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE T Image Process. 24(12):5892–5903, 2015. https://doi.org/10.1109/TIP.2015.2493446.
Ma, L., Liu, X., Gao, Y., et al., A new method of content based medical image retrieval and its applications to CT imaging sign retrieval. J Biomed Inform. 66:148–158, 2017. https://doi.org/10.1016/j.jbi.2017.01.002.
Liu, Y., Jin, R., Lily, M., Sukthankar, R., Goode, A., Zheng, B., Hoi, S.C.H., and Satyanarayanan, M., A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE T Pattern Anal. 32:30–44, 2010. https://doi.org/10.1109/tpami.2008.273.
Wei, G., Ma, H., Qian, W., and Qiu, M., Similarity measurement of lung masses for medical image retrieval using kernel based semisupervised distance metric. Med Phys. 43(12):6259–6269, 2016. https://doi.org/10.1118/1.4966030.
Armato, S.G., et al., The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 38(2):915–931, 2011. https://doi.org/10.1118/1.3528204.
Warfield, S.K., Zou, K.H., and Wells, W.M., Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE T Med Imaging. 23(7):903–921, 2004. https://doi.org/10.1109/TMI.2004.828354.
Ojala, T., Pietikäinen, M., and Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 24(7):971–987, 2002. https://doi.org/10.1109/tpami.2002.1017623.
Wei, C. H., Li, Y., and Li, C. T., Effective extraction of Gabor features for adaptive mammogram retrieval. in 2007 I.E. International Conference on Multimedia and Expo (IEEE, New York, NY, 2007), pp. 1503–1506.
Haralick, R.M., Shanmugam, K., and Dinstein, I., Textural features for image classification. IEEE Trans Syst Man Cybern. 6:610–621, 1973.
Sluimer, I.C., van Waes, P.F., Viergever, M.A., and Ginneken, B.v., Computer-aided diagnosis in high resolution CT of the lungs. Med Phys. 30(12):3081–3090, 2003. https://doi.org/10.1118/1.1624771.
Liu, Y., and Jin, R., Distance metric learning: a comprehensive survey, technical report. Report No. UCB/CSD-02-1206, 2006.
Xiong, Y., Luo, Y., Huang, W., Zhang, W., Yang, Y., and Gao, J., A novel classification method based on ICA and ELM: a case study in lie detection. Bio-Med Mater Eng. 24(1):357–363, 2014. https://doi.org/10.3233/BME-130818.
Acknowledgements
The research is supported by the Recruitment Program of Global Experts (Grant no. 01270021814101/022), the National Natural Science Foundation of China (No. 61702087; No. 81671773; No. 61672146; No. 81473708), the Fundamental Research Funds for the Central Universities (Grant no. N150408001).
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Image & Signal Processing
Rights and permissions
About this article
Cite this article
Wei, G., Cao, H., Ma, H. et al. Content-based image retrieval for Lung Nodule Classification Using Texture Features and Learned Distance Metric. J Med Syst 42, 13 (2018). https://doi.org/10.1007/s10916-017-0874-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-017-0874-5