Skip to main content

Advertisement

Log in

Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Promoting patient care is a priority for all healthcare providers with the overall purpose of realising a high degree of patient satisfaction. A medical centre server is a remote computer that enables hospitals and physicians to analyse data in real time and offer appropriate services to patients. The server can also manage, organise and support professionals in telemedicine. Therefore, a remote medical centre server plays a crucial role in sustainably delivering quality healthcare services in telemedicine. This article presents a comprehensive review of the provision of healthcare services in telemedicine applications, especially in the medical centre server. Moreover, it highlights the open issues and challenges related to providing healthcare services in the medical centre server within telemedicine. Methodological aspects to control and manage the process of healthcare service provision and three distinct and successive phases are presented. The first phase presents the identification process to propose a decision matrix (DM) on the basis of a crossover of ‘multi-healthcare services’ and ‘hospital list’ within intelligent data and service management centre (Tier 4). The second phase discusses the development of a DM for hospital selection on the basis of integrated VIKOR-Analytic Hierarchy Process (AHP) methods. Finally, the last phase examines the validation process for the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gilpin, R., and Gilpin, J. M., The challenge of global capitalism: The world economy in the 21st century. 5th edition. Princeton: Princeton University Press, 2000.

    Google Scholar 

  2. Salman, O. H., Rasid, M. F. A., Saripan, M. I., and Subramaniam, S. K., Multi-Sources Data Fusion Framework for Remote Triage Prioritization in Telehealth. J. Med. Syst. 38(9):103, 2014.

    Article  PubMed  CAS  Google Scholar 

  3. T. H. Sanders, A. Devergnas, T. Wichmann, and M. A. Clements, Remote stphone monitoring for management of Parkinson’s Disease. in Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments. 42, 2013.

  4. J. Mirkovic, H. Bryhni, and C. M. Ruland, A framework for the development of ubiquitous patient support systems. in Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012 6th International Conference on. 81–88, 2012.

  5. Chowdhury, M., Mciver, W., and Light, J., Data association in remote health monitoring systems. IEEE Commun. Mag. 50(6):144–149, 2012.

    Article  Google Scholar 

  6. Acampora, G., Cook, D. J., Rashidi, P., and Vasilakos, A. V., A Survey on Ambient Intelligence in Health Care.. Proc. IEEE. Inst. Electr. Electron. Eng. 101(12):2470–2494, 2013.

    Google Scholar 

  7. A. S. Albahri et al., Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects. J. Med. Syst., 42(8), 2018.

  8. Wang, J., Qiu, M., and Guo, B., Enabling real-time information service on telehealth system over cloud-based big data platform. J. Syst. Archit. 72:69–79, 2017.

    Article  Google Scholar 

  9. Chang, M.-Y., Pang, C., Tarn, J. M., Liu, T.-S., and Yen, D. C., Exploring user acceptance of an e-hospital service: An empirical study in Taiwan. Comput. Stand. Interfaces 38:35–43, 2015.

    Article  Google Scholar 

  10. Alanazi, H. O., Zaidan, A. A., Zaidan, B. B., Mat Kiah, M. L., and Al-Bakri, S. H., Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 39(1):1–14, 2015.

    Article  Google Scholar 

  11. Alanazi, H. O., Alam, G. M., Zaidan, B. B., and Zaidan, A. A., Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. J. Medi. Plants Res. 4(19):2059–2074, 2010.

    Article  Google Scholar 

  12. Hussain, M., Al-Haiqi, A., Zaidan, A., Zaidan, B., Kiah, M. M., Anuar, N. B., and Abdulnabi, M., The rise of keyloggers on stphones: A survey and insight into motion-based tap inference attacks. Pervasive Mob. Comput. 25:1–25, 2016.

    Article  Google Scholar 

  13. Mat Kiah, M. L., Al-Bakri, S. H., Zaidan, A. A., Zaidan, B. B., and Hussain, M., Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture. J. Med. Syst. 38(10):1–13, 2014c.

    Article  Google Scholar 

  14. Mat Kiah, M. L., Nabi, M. S., Zaidan, B. B., and Zaidan, A. A., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 37(5):1–16, 2013.

    Google Scholar 

  15. Abdulnabi, M., Al-Haiqi, A., Kiah, M. L. M., Zaidan, A. A., Zaidan, B. B., and Hussain, M., A distributed framework for health information exchange using stphone technologies. J. Biomed. Inform. 69:230–250, 2017.

    Article  PubMed  Google Scholar 

  16. Zaidan, B. B., Zaidan, A. A., and Mat Kiah, M. L., Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharm. 7(3):382–387, 2011.

    Article  Google Scholar 

  17. Hussain, M., Ahmed, A.-H., Zaidan, A. A., and Zaidan, B. B., M Kiah, Salman Iqbal, S Iqbal, Mohamed Abdulnabi "a security framework for mHealth apps on android platform". Comput. Sec. 45:191–217, 2018.

    Article  Google Scholar 

  18. Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., and Abdulnabi, M., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53(0):390–404, 2015.

    Article  PubMed  CAS  Google Scholar 

  19. Bradai, N., Charfi, E., Fourati, L. C., and Kamoun, L., Priority consideration in inter-WBAN data scheduling and aggregation for monitoring systems. Trans. Emerg. Telecomm. Technol. 27(4):589–600, 2016.

    Article  Google Scholar 

  20. Almadani, B., Saeed, B., and Alroubaiy, A., Healthcare systems integration using Real Time Publish Subscribe (RTPS) middleware. Comput. Electr. Eng. 50:67–78, 2016.

    Article  Google Scholar 

  21. Bradai, N., Chaari Fourati, L., and Kamoun, L., WBAN data scheduling and aggregation under WBAN/WLAN healthcare network. Ad Hoc Netw. 25(PA):251–262, 2015.

    Article  Google Scholar 

  22. S. Gambhir and M. Kathuria, DWBAN: Dynamic priority based WBAN architecture for healthcare system. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). 3380–3386, 2016.

  23. Gündoğdu, K., and Çalhan, A., An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay. J. Med. Syst. 40(3):75, 2016.

    Article  PubMed  Google Scholar 

  24. Rae Hyun Kim, Pyung Soo Kim, and Jeong Gon Kim, An effect of delay reduced MAC protocol for WBAN based medical signal monitoring. in 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), 2015. 2015; 434–437, 2015.

  25. Y. Zhao and H. G. Kerkhoff, Design of an Embedded Health Monitoring Infrastructure for Accessing Multi-processor SoC Degradation. in 2014 17th Euromicro Conference on Digital System Design, pp. 154–160, 2015.

  26. M. A. Shah, J. Kim, M. H. Khadra, and D. Feng, Home Area Network for Optimizing Telehealth Services- Empirical Simulation Analysis. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 1370–1373, 2014.

  27. Rezvani, S., and Ghorashi, S. A., Context aware and channel-based resource allocation for wireless body area networks. IET Wirel. Sens. Syst. 3(1):16–25, 2013.

    Article  Google Scholar 

  28. Ren, J., Wu, G., Li, X., Pirozmand, P., and Obaidat, M. S., Probabilistic response-time analysis for real-time systems in body area sensor networks. Int. J. Commun. Syst. 28(16):2145–2166, 2015.

    Article  Google Scholar 

  29. S. Ghanavati, J. Abawaji, and D. Izadi, A Congestion Control Scheme Based on Fuzzy Logic in Wireless Body Area Networks. in 2015 IEEE 14th International Symposium on Network Computing and Applications. 235–242, 2015.

  30. S. Ghanavati, J. Abawajy, and D. Izadi, ECG rate control scheme in pervasive health care monitoring system. in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2265–2270, 2016.

  31. Rezaee, A. A., Yaghmaee, M. H., and Rahmani, A. M., Optimized Congestion Management Protocol for Healthcare Wireless Sensor Networks. Wirel. Pers. Commun. 75(1):11–34, 2014.

    Article  Google Scholar 

  32. Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., and Mohajerzadeh, A. H., HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. J. Netw. Comput. Appl. 37(1):216–228, 2014.

    Article  Google Scholar 

  33. J. Kaur, K. S. Saini, and R. Grewal, Priority based congestion avoidance hybrid scheme for Wireless Sensor Network. in 2015 1st International Conference on Next Generation Computing Technologies (NGCT. (ember):158–165, 2015.

  34. Lin, D., Labeau, F., Yao, Y., Vasilakos, A. V., and Tang, Y., Admission control over internet of vehicles attached with medical sensors for ubiquitous healthcare applications. IEEE J. Biomed. Heal. Info. 20(4):1195–1204, 2016.

    Article  Google Scholar 

  35. I. Al Mamoon, A. K. M. Muzahidul-Islam, S. Baharun, S. Komaki, and A. Ahmed, Architecture and communication protocols for cognitive radio network enabled hospital. in 2015 9th International Symposium on Medical Information and Communication Technology (ISMICT). 2015; 170–174, 2015.

  36. Haque, S. A., and Aziz, S. M., False alarm detection in cyber-physical Systems for Healthcare Applications. AASRI Procedia 5:54–61, 2013.

    Article  Google Scholar 

  37. X. Yuan, C. Li, Y. Song, L. Yang, and S. Ullah, On energy-saving in e-healthcare: A directional MAC protocol for WBAN. in 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings, 2015.

  38. Sudha, G. F., Karthik, S., and Ku, N. S., Activity aware energy efficient priority based multi patient monitoring adaptive system for body sensor networks. Technol. Health Care 22(2):167–177, 2014.

    PubMed  Google Scholar 

  39. Rodrigues, E. M. G., Godina, R., Cabrita, C. M. P., and Catalão, J. P. S., Biomedical signal processing and control experimental low cost reflective type oximeter for wearable health systems. Biomed. Sig. Proces. Control 31:419–433, 2017.

    Article  Google Scholar 

  40. N. Li, K. Lin, S. Yong, X. Chen, X. Wang, and X. Zhang, Design and implementation of a MAC protocol for a wearable monitoring system on human body. in 2015 IEEE 11th International Conference on ASIC (ASICON). 1–4, 2015.

  41. Li, C., Yuan, X., Yang, L., and Song, Y., A Hybrid Lifetime Extended Directional Approach for WBANs. Sensors 15(12):28005–28030, 2015.

    Article  PubMed  Google Scholar 

  42. Hwang, T. H., Kim, D. S., and Kim, J. G., An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems. Sensors (Switzerland) 13(1):375–392, 2013.

    Article  Google Scholar 

  43. T. Puri, R. K. Challa, and N. K. Sehgal, Energy efficient QoS aware MAC layer time slot allocation scheme for WBASN. in 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI. 966–972, 2015.

  44. Misra, S., and Sarkar, S., Priority-Based Time-Slot Allocation in Wireless Body Area Networks During Medical Emergency Situations: An Evolutionary Game-Theoretic Perspective. IEEE J. Biomed. Heal. Info. 19(2):541–548, 2015.

    Article  Google Scholar 

  45. Ru Kong, C. Chen, W. Yu, B. Yang, and X. Guan, Data priority based slot allocation for Wireless Body Area Networks. in 2013 International Conference on Wireless Communications and Signal Processing. 1–6, 2013.

  46. Chiang, H., Lai, C., and Huang, Y., A green cloud-assisted health monitoring service on wireless body area networks. Inf. Sci. (Ny). 284:118–129, 2014.

    Article  Google Scholar 

  47. Ben Elhadj, H., Elias, J., Chaari, L., and Kamoun, L., A Priority based Cross Layer Routing Protocol for healthcare applications. Ad Hoc Netw. 42:1–18, 2016.

    Article  Google Scholar 

  48. Sevin, A., Bayilmis, C., and Kirbas, I., Design and implementation of a new quality of service-aware cross-layer medium access protocol for wireless body area networks. Comput. Electr. Eng. 56:145–156, 2016.

    Article  Google Scholar 

  49. Iftikhar, M., Al Elaiwi, N., and Aksoy, M. S., Performance analysis of priority queuing model for low power wireless body area networks (WBANs). Proc. Comput. Sci. 34:518–525, 2014.

    Article  Google Scholar 

  50. Iftikhar, M., and Ahmad, I., A el analytical model for provisioning QoS in body area sensor networks. Proc. Comput. Sci. 32:900–907, 2014.

    Article  Google Scholar 

  51. Hu, L., Zhang, Y., Feng, D., Hassan, M. M., Alelaiwi, A., and Alamri, A., Design of QoS-Aware Multi-Level MAC-Layer for Wireless Body Area Network. J. Med. Syst. 39(12):192, 2015.

    Article  PubMed  Google Scholar 

  52. D. Baehr, S. McKinney, A. Quirk, and K. Harfoush, On the practicality of elliptic curve cryptography for medical sensor networks. in 2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy). 41–45, 2014.

  53. de la Piedra, A., Braeken, A., Touhafi, A., and Wouters, K., Secure event logging in sensor networks. Comput. Math. Appl. 65(5):762–773, 2013.

    Google Scholar 

  54. D. S. Hedin, D. T. Kollmann, P. L. Gibson, T. H. Riehle, and G. J. Seifert, Distance bounded energy detecting ultra-wideband impulse radio secure protocol. in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014; 6619–6622, 2014.

  55. Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D., Sensing as a service model for st cities supported by Internet of Things. Trans. Emerg. Telecomm. Technol. 25(1):81–93, 2014.

    Article  Google Scholar 

  56. Rubio, Ó. J., Trigo, J. D., Alesanco, Á., Serrano, L., and García, J., Analysis of ISO/IEEE 11073 built-in security and its potential IHE-based extensibility. J. Biomed. Inform. 60:270–285, 2016.

    Article  PubMed  Google Scholar 

  57. T. Benmansour, T. Ahmed, and S. Moussaoui, Performance Evaluation of IEEE 802.15.6 MAC in Monitoring of a Cardiac Patient. in 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops), . 241–247, 2016.

  58. H. Fourati, H. Idoudi, T. Val, A. Van Den Bossche, and L. A. Saidane, Performance evaluation of IEEE 802.15.6 CSMA/CA-based CANet WBAN. in 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA). 1–7, 2015.

  59. Radhakrishnan, S., Duvvuru, A., and Kathi, S. V., Investigating discrete event simulation method to assess the effectiveness of wearable health monitoring devices. Procedia. Econ. Fin. 11(14):838–856, 2014.

    Google Scholar 

  60. Meizoso, J. P. et al., Evaluation of Miniature Wireless Vital Signs Monitor in a Trauma Intensive Care Unit. Mil. Med. 181(5S):199–204, 2016.

    Article  PubMed  Google Scholar 

  61. Villalonga, C., Poes, H., Rojas, I., and Banos, O., MIMU-Wear: Ontology-based sensor selection for real-world wearable activity recognition. Neurocomputing 250(2017):76–100, 2017.

    Article  Google Scholar 

  62. M. Hussain et al., Conceptual framework for the security of mobile health applications on Android platform. Telemat .Info. 2018.

  63. Fezari, M., Rasras, R., and El Ey, I. M. M., Ambulatory Health Monitoring System Using Wireless Sensors Node. Proc. Comput. Sci. 65(Iccmit):86–94, 2015.

    Article  Google Scholar 

  64. Boursalie, O., Samavi, R., and Doyle, T. E., M4CVD: Mobile Machine Learning Model for Monitoring Cardiovascular Disease. Proc. Comput. Sci. 63(Icth):384–391, 2015.

    Article  Google Scholar 

  65. Villarreal, V., Fontecha, J., Hervas, R., and Bravo, J., Mobile and ubiquitous architecture for the medical control of chronic diseases through the use of intelligent devices: Using the architecture for patients with diabetes. Futur. Gener. Comput. Syst. 34:161–175, 2014.

    Article  Google Scholar 

  66. Sebillo, M., Tortora, G., Tucci, M., Vitiello, G., Ginige, A., and Di Giovanni, P., Combining personal diaries with territorial intelligence to empower diabetic patients. J. Vis. Lang. Comput. 29:1–14, 2015.

    Article  Google Scholar 

  67. Hindia, M. N., Rahman, T. A., Ojukwu, H., Hanafi, E. B., and Fattouh, A., Enabling Remote Health-Caring Utilizing IoT Concept over LTE-Femtocell Networks. PLoS One 11(5):e0155077, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Katib, A., Rao, D., Rao, P., Williams, K., and Grant, J., A prototype of a el cell phone application for tracking the vaccination coverage of children in rural communities. Comput. Methods Prog. Biomed. 122(2):215–228, 2015.

    Article  Google Scholar 

  69. Lwin, M. O. et al., A 21st century approach to tackling dengue: Crowdsourced surveillance, predictive mapping and tailored communication. Acta Trop. 130:100–107, 2014.

    Article  PubMed  Google Scholar 

  70. Bresó, A., J. tínez-Miranda, E. Fuster-García, and J. M. García-Gómez, A el approach to improve the planning of adaptive and interactive sessions for the treatment of Major Depression. Int. J. Hum. Comput. Stud. 87:80–91, 2016.

    Article  Google Scholar 

  71. Chakraborty, S., Ghosh, S. K., Jamthe, A., and Agrawal, D. P., Detecting Mobility for Monitoring Patients with Parkinson’s Disease at Home using RSSI in a Wireless Sensor Network. Proc. Comput. Sci. 19:956–961, 2013.

    Article  Google Scholar 

  72. Hermens, H., op den Akker, H., Tabak, M., Wijsman, J., and Vollenbroek, M., Personalized Coaching Systems to support healthy behavior in people with chronic conditions. J. Electromyogr. Kinesiol. 24(6):815–826, 2014.

    Article  PubMed  CAS  Google Scholar 

  73. C. Beck and J. Georgiou, A wearable, multimodal, vitals acquisition unit for intelligent field triage. in 2016 IEEE International Symposium on Circuits and Systems (ISCAS). 2016; 1530–1533, 2016.

  74. S. Adibi, A mobile health network disaster management system. in 2015 Seventh International Conference on Ubiquitous and Future Networks. 424–428, 2015.

  75. L. I. Besaleva and A. C. Weaver, Mobile electronic triaging for emergency response improvement through crowdsourced and sensor-detected information. in Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining - ASONAM ‘13. 1092–1093, 2013.

  76. Ganz, A., Schafer, J. M., Tang, J., Yang, Z., Yi, J., and Ciottone, G., Urban search and rescue situational awareness using DIORAMA disaster management system. Procedia Eng. 107:349–356, 2015.

    Article  Google Scholar 

  77. S. Gunasekaran and M. Suresh, A el control of disaster protection (NCDP) for pilgrims by pan technology. in 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO). 103–107, 2014.

  78. A. Renner et al., RIPPLE: Scalable medical telemetry system for supporting combat rescue. in NAECON 2014 - IEEE National Aerospace and Electronics Conference. 2015; 228–232, 2014.

  79. Ali, R. et al., GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare. Sensors 15(12):15772–15798, 2015.

    Article  PubMed  Google Scholar 

  80. Gaynor, M., and Waterman, J., Design framework for sensors and RFID tags with healthcare applications. Heal. Policy Technol. 5(4):357–369, 2016.

    Article  Google Scholar 

  81. Kim, H.-K., Convergence agent model for developing u-healthcare systems. Futur. Gener. Comput. Syst. 35:39–48, 2014.

    Article  Google Scholar 

  82. Misra, S., and Chatterjee, S., Social choice considerations in cloud-assisted WBAN architecture for post-disaster healthcare: Data aggregation and channelization. Inf. Sci. (Ny). 284:95–117, 2014.

    Article  Google Scholar 

  83. Zhang, K., Liang, X., Baura, M., Lu, R., and Shen, X., PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs. Inf. Sci. (Ny). 284:130–141, 2014.

    Article  Google Scholar 

  84. Yi, C., Zhao, Z., Cai, J., and Lobato de Faria, R., G. (Michael) Zhang, Priority-aware pricing-based capacity sharing scheme for beyond-wireless body area networks. Comput. Netw. 98:29–43, 2016.

    Article  Google Scholar 

  85. Ben Elhadj, H., Elias, J., Chaari, L., and Kamoun, L., Multi-Attribute ision Making Handover Algorithm for Wireless Body Area Networks. Comput. Commun. 81:97–108, 2016.

    Article  Google Scholar 

  86. Yi, C., Alfa, A. S., and Cai, J., An Incentive-Compatible Mechanism for Transmission Scheduling of Delay-Sensitive Medical Packets in E-Health Networks. IEEE Trans. Mob. Comput. 15(10):2424–2436, 2016.

    Article  Google Scholar 

  87. Zhang Yi et al., Emergency treatment in st terminal-based e-healthcare networks. in 2015 4th International Conference on Computer Science and Network Technology (ICCSNT). (Iccsnt):1178–1181, 2015.

  88. Sneha, S., and Varshney, U., A framework for enabling patient monitoring via mobile ad hoc network. Sup. Syst. 55(1):218–234, 2013.

    Article  Google Scholar 

  89. Bouakaz, S. et al., CIRDO: St companion for helping elderly to live at home for longer. IRBM 35(2):100–108, 2014.

    Article  Google Scholar 

  90. De Backere, F., Bonte, P., Verstichel, S., Ongenae, F., and De Turck, F., The OCarePlatform: A context-aware system to support independent living. Comput. Methods Prog. Biomed. 140:111–120, 2017.

    Article  Google Scholar 

  91. B. Kormanyos and B. Pataki, Multilevel simulation of daily activities: Why and how?. in 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). 1–6, 2013.

  92. Rahmani, A. M. et al., Exploiting st e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Futur. Gener. Comput. Syst. 78:641–658, 2017.

    Article  Google Scholar 

  93. Varshney, U., A model for improving quality of isions in mobile health. Sup. Syst. 62:66–77, 2014.

    Article  Google Scholar 

  94. Minutolo, A., Esposito, M., and De Pietro, G., Design and validation of a light-weight reasoning system to support remote health monitoring applications. Eng. Appl. Artif. Intell. 41:232–248, 2015.

    Article  Google Scholar 

  95. Alnanih, R., Ormandjieva, O., and Radhakrishnan, T., Context-based and rule-based adaptation of mobile user interfaces in mHealth. Proc. Comput. Sci. 21:390–397, 2013.

    Article  Google Scholar 

  96. Fratini, A., and Caleffi, M., Medical emergency alarm dissemination in urban environments. Telemat. Info. 31(3):511–517, 2014.

    Article  Google Scholar 

  97. Peleg, M. et al., Assessment of a personalized and distributed patient guidance system. Int. J. Med. Inform. 101:108–130, 2017.

    Article  PubMed  Google Scholar 

  98. Tawfik, H., and Anya, O., Evaluating practice-centered awareness in cross-boundary telehealth ision support systems. Telemat. Info. 32(3):486–503, 2015.

    Article  Google Scholar 

  99. Tamura, T. et al., Assessment of participant compliance with a Web-based home healthcare system for promoting specific health checkups. Biocybern. Biomed. Eng. 34(1):63–69, 2014.

    Article  Google Scholar 

  100. Lounis, A., Hadjidj, A., Bouabdallah, A., and Challal, Y., Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Futur. Gener. Comput. Syst. 55:266–277, 2016.

    Article  Google Scholar 

  101. Saleem, K., Derhab, A., Al-Muhtadi, J., and Shahzad, B., Human-oriented design of secure Machine-to-Machine communication system for e-Healthcare society. Comput. Hum. Behav. 51:977–985, 2015.

    Article  Google Scholar 

  102. Nageba, E., Rubel, P., and Fayn, J., Towards an intelligent exploitation of heterogeneous and distributed resources in cooperative environments of eHealth. IRBM 34(1):79–85, 2013.

    Article  Google Scholar 

  103. Sene, A., Kamsu-foguem, B., and Rumeau, P., Telemedicine framework using case-based. Comput. Methods Prog. Biomed. 121(1):21–35, 2015.

    Article  CAS  Google Scholar 

  104. Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., and Foguem, C., Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise. Telemat. Info. 31(4):648–659, 2014.

    Article  Google Scholar 

  105. Urovi, V., Jimenez-del-Toro, O., Dubosson, F., Ruiz Torres, A., and Schumacher, M. I., COMPOSE: Using temporal patterns for interpreting wearable sensor data with computer interpretable guidelines. Comput. Biol. Med. 81:24–31, 2017.

    Article  PubMed  CAS  Google Scholar 

  106. Tegegne, T., and van der Weide, T. P., Enriching queries with user preferences in healthcare. Inf. Process. Manag. 50(4):599–620, 2014.

    Article  Google Scholar 

  107. V. Yeguas and R. Casado, Big data issues in computational chemistry. in Proceedings - 2014 International Conference on Future Internet of Things and Cloud, FiCloud 2014. 389–392, 2014.

  108. Wolfe, P. J., Making sense of big data. Proc. Natl. Acad. Sci. 110(45):18031–18032, 2013.

    Article  PubMed  Google Scholar 

  109. Archenaa, J., and Anita, E. A. M., A survey of big data analytics in healthcare and government. Proc. Comput. Sci. 50(4):408–413, 2015.

    Article  Google Scholar 

  110. P. Bellini, M. di Claudio, P. Nesi, and N. Rauch, Tassonomy and Review of Big Data Solutions Navigation. in Big Data Computing, no. ember. 57–101, 2013.

  111. Y. Demchenko, P. Grosso, C. de Laat, and P. Membrey, Addressing big data issues in Scientific Data Infrastructure. in 2013 International Conference on Collaboration Technologies and Systems (CTS). 48–55, 2013.

  112. F. M. Megahed and L. A. Jones-Farmer, Statistical Perspectives on ‘Big Data,’” in Frontiers in Statistical Quality Control 11, vol. 11th ed, Cham: Springer International Publishing. 29–47, 2015.

  113. M. Minelli, M. Chambers, and A. Dhiraj, Big Data Analytics - Emerging BI and Analitics trends for today’s businesses. 2013.

  114. H. Rahman, S. Begum, and M. U. Ahmed, Ins and Outs of Big Data : A Review. 18–19, 2016.

  115. Wang, L., and Alexander, C. A., Big data in medical applications and health care. Am. Med. J. 6(1):1–8, 2015.

    Google Scholar 

  116. Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., and Muzammil, H., Based real time remote health monitoring systems: A review on patients prioritization and related" big data" using body sensors information and communication technology. J. Med. Syst. 42(2):30, 2018.

    Article  Google Scholar 

  117. M. T. Moutacalli, V. Men, A. Bouzouane, and B. Bouchard, Activity pattern mining using temporal relationships in a st home. in 2013 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE). 83–87, 2013.

  118. Sakr, S., and Elgammal, A., Towards a Comprehensive Data Analytics Framework for St Healthcare Services. Big Data Res. 4:44–58, 2016.

    Article  Google Scholar 

  119. Bharatula, S., and Meenakshi, M., Design of Cognitive Radio Network for Hospital Management System. Wirel. Pers. Commun. 90(2):1021–1038, 2016.

    Article  Google Scholar 

  120. Vaidehi, V., Vardhini, M., Yogeshwaran, H., Inbasagar, G., Bhargavi, R., and Hemalatha, C. S., Agent Based Health Monitoring of Elderly People in Indoor Environments Using Wireless Sensor Networks. Proc. Comput. Sci. 19(Ant):64–71, 2013.

    Article  Google Scholar 

  121. Ben Othman, S., Zgaya, H., Hammadi, S., and Quilliot, A., A. tinot, and J.-M. Renard, Agents endowed with uncertainty management behaviors to solve a multiskill healthcare task scheduling. J. Biomed. Inform. 64:25–43, 2016.

    Article  PubMed  Google Scholar 

  122. Westergren, H., Ferm, M., and Häggström, P., First evaluation of the paediatric version of the Swedish rapid emergency triage and treatment system shows good reliability. Acta Paediatr. 103(3):305–308, 2014.

    Article  PubMed  Google Scholar 

  123. Seising, R., and Tabacchi, M., Fuzziness and medicine: Philosophical reflections and application Systems in Health Care, vol. 302. Berlin: Springer Berlin Heidelberg, 2013.

    Google Scholar 

  124. M. Jentsch and L. Ramirez, The reconfiguration of triage by introduction of technology. in Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services (MobileHCI ‘13), 2013. 55–64, 2013.

  125. Innes, K., Plummer, V., and Considine, J., Nurses’ perceptions of their preparation for triage. Australas. Emerg. Nurs. J. 14(2):81–86, 2011.

    Article  Google Scholar 

  126. A. B. Rn, C. Nurse, D. E. C. Rn, and A. Dean, Reducing uncertainty in triaging mental health presentations : Examining triage ision-making. Int. Emerg. Nurs.. 1–5, 2013.

  127. Godfrey, B. et al, Emergency Medical Guidelines. Sun. Act. Flo. (3):245, 2000.

  128. Ritchie, C., and Lai, R., A systematic review of the scientific evidence for the efficacy of a palliative care approach in dementia A systematic review of the scientific evidence. Int. Psychogeriatr. 17:31–40, 2005.

    Article  PubMed  Google Scholar 

  129. Bernstein, S. L., and D’Onofrio, G., Public Health in the Emergency Department: Academic Emergency Medicine Consensus Conference Executive Sumy. Acad. Emerg. Med. 16(11):1037–1039, 2009.

    Article  PubMed  Google Scholar 

  130. S. Moreno, A. Quintero, C. Ochoa, M. Bonfante, R. Villareal, and J. Pestana, Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room. in 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA). 1–5, 2016.

  131. M. Niswar et al., Performance evaluation of ZigBee-based wireless sensor network for monitoring patients’ pulse status. in 2013 International Conference on Information Technology and Electrical Engineering (ICITEE). 291–294, 2013.

  132. J. R. B. Dos Santos, G. Blard, A. S. R. Oliveira, and N. B. De Carvalho, Wireless Sensor Tag and Network for Improved Clinical Triage. in 2015 Euromicro Conference on Digital System Design. 399–406, 2015.

  133. Sakanushi, K. et al., Electronic triage system for continuously monitoring casualties at disaster scenes. J. Ambient. Intell. Humaniz. Comput. 4(5):547–558, 2013.

    Article  Google Scholar 

  134. M. Niswar et al., The design of wearable medical device for triaging disaster casualties in developing countries. in 2015 5th International Conference on Digital Information Processing and Communications, ICDIPC 2015. 207–212, 2015.

  135. F. Ullah, A. Khelil, A. A. Sheikh, E. Felemban, and H. M. A. Bo, Towards automated self-tagging in emergency health cases. in 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013). (Healthcom):658–663, 2013.

  136. D. Rodriguez, S. Heuer, A. Guerra, W. Stork, B. Weber, and M. Eichler, Towards automatic sensor-based triage for individual remote monitoring during mass casualty incidents. in 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 544–551, 2014.

  137. Calyam, P. et al., Synchronous Big Data analytics for personalized and remote physical therapy. Pervasive Mob. Comput. 28:3–20, 2016.

    Article  Google Scholar 

  138. Ganapathy, K., Priya, B., Priya, B., Dhivya, V. P., and Vaidehi, V., SOA Framework for Geriatric Remote Health Care Using Wireless Sensor Network. Proc. Comput. Sci. 19(Fams):1012–1019, 2013.

    Article  Google Scholar 

  139. Ganapathy, K., Vaidehi, V., Kannan, B., and Murugan, H., Hierarchical Particle Swarm Optimization with Ortho-Cyclic Circles. Expert Syst. Appl. 41(7):3460–3476, 2014.

    Article  Google Scholar 

  140. Gómez, J., Oviedo, B., and Zhuma, E., Patient Monitoring System Based on Internet of Things. Proc. Comput. Sci. 83(Ant):90–97, 2016.

    Article  Google Scholar 

  141. Hussain, A., Wenbi, R., da Silva, A. L., Nadher, M., and Mudhish, M., Health and emergency-care platform for the elderly and disabled people in the St City. J. Syst. Softw. 110:253–263, 2015.

    Article  Google Scholar 

  142. Kovalchuk, S. V., Krotov, E., Smir, P. A., Naso, D. A., and Yakovlev, A. N., Distributed data-driven platform for urgent ision making in cardiological ambulance control. Futur. Gener. Comput. Syst. 79:144–154, 2016.

    Article  Google Scholar 

  143. Ku, N., Kaur, K., Jindal, A., and Rodrigues, J. J. P. C., Providing healthcare services on-the-fly using multi-player cooperation game theory in Internet of Vehicles (IoV) environment. Digit. Commun. Netw. 1(3):191–203, 2015.

    Article  Google Scholar 

  144. Lamprinakos, G. C. et al., An integrated remote monitoring platform towards Telehealth and Telecare services interoperability. Inf. Sci. (Ny). 308(ch):23–37, 2015.

    Article  Google Scholar 

  145. J. Mendes, H. Simões, P. Rosa, N. Costa, C. Rabadão, and A. Pereira, Secure Low-cost Solution for Elder’s eCardio Surveillance. Proc. Comput. Sci., vol. 27, no. Dsai 2013, pp. 46–56, 2014.

  146. Miah, S. J., Hasan, J., and Gammack, J. G., On-Cloud Healthcare Clinic: An e-health consultancy approach for remote communities in a developing country. Telemat. Info. 34(1):311–322, 2017.

    Article  Google Scholar 

  147. Moretti, S., Cicalò, S., Mazzotti, M., Tralli, V., and Chiani, M., Content/context-aware multiple camera selection and video adaptation for the support of m-health services. Proc. Comput. Sci. 40:206–213, 2014.

    Article  Google Scholar 

  148. Zanjal, S. V., and Talmale, G. R., Medicine Reminder and Monitoring System for Secure Health Using IOT. Proc. Comput. Sci. 78:471–476, 2016.

    Article  Google Scholar 

  149. Teijeiro, T., Félix, P., Presedo, J., and Zarón, C., An open platform for the protocolization of home medical supervision. Expert Syst. Appl. 40(7):2607–2614, 2013.

    Article  Google Scholar 

  150. Sung, W., and Chang, K., Health parameter monitoring via a el wireless system. Appl. Soft Comput. 22:667–680, 2014.

    Article  Google Scholar 

  151. Rajku, R., and Sriman Narayana Iyengar, N. C., Dynamic Integration of Mobile JXTA with Cloud Computing for Emergency Rural Public Health Care. Osong Public Heal. Res. Perspect. 4(5):255–264, 2013.

    Article  Google Scholar 

  152. Rocha, A. et al., Inations in health care services: The CAALYX system. Int. J. Med. Inform. 82(11):1–14, 2013.

    Article  Google Scholar 

  153. Kalid, N. et al., Based on Real Time Remote Health Monitoring Systems: A New Approach for Prioritization ‘Large Scales Data’ Patients with Chronic Heart Diseases Using Body Sensors and Communication Technology. J. Med. Syst. 42(4):69, 2018.

    Article  PubMed  Google Scholar 

  154. van Dyk, L., A review of telehealth service implementation frameworks. Int. J. Environ. Res. Public Health 11(2):1279–1298, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Jeong, S., Youn, C.-H., Shim, E. B., Kim, M., Cho, Y. M., and Peng, L., An integrated healthcare system for personalized chronic disease care in home–hospital environments. IEEE Trans. Inf. Technol. Biomed. 16(4):572–585, 2012.

    Article  PubMed  Google Scholar 

  156. Zaidan, A. A., Zaidan, B. B., Kadhem, Z., Larbani, M., Lakulu, M. B., and Hashim, M., Challenges, Alternatives, and Paths to Sustainability: Better Public Health Promotion Using Social Networking Pages as Key Tools. J. Med. Syst. 39(2):7, 2015.

    Article  PubMed  CAS  Google Scholar 

  157. Kiah, M. L. M., Zaidan, B. B., Zaidan, A. A., Nabi, M., and Ibraheem, R., MIRASS: Medical informatics research activity support system using information mashup network. J. Med. Syst. 38(4):37, 2014.

    Article  PubMed  CAS  Google Scholar 

  158. Busse, R., Schreyögg, J., and Smith, P. C., Variability in healthcare treatment costs amongst nine EU countries–results from the HealthBASKET project. Health Econ. S1:17, 2008.

    Google Scholar 

  159. L. H. Wizig, Method and system for providing a user-selected healthcare services package and healthcare services panel customized based on a user’s selections.” Google Patents, 2004.

  160. Baig, M. M., and Gholamhosseini, H., St health monitoring systems: an overview of design and modeling. J. Med. Syst. 37(2):9898, 2013.

    Article  PubMed  Google Scholar 

  161. Li, S. H., Cheng, K. A., Lu, W. H., and Lin, T. C., Developing an active emergency medical service system based on WiMAX technology. J. Med. Syst. 36(5):3177–3193, 2012.

    Article  PubMed  Google Scholar 

  162. Fernandes, C. M., Wuerz, R., Clark, S., and Djurdjev, O., How reliable is emergency department triage? Ann. Emerg. Med. 34(2):141–147, 1999.

    Article  PubMed  CAS  Google Scholar 

  163. Culley, J. M., Svendsen, E., Craig, J., and Tavakoli, A., A validation study of 5 triage systems using data from the 2005 Graniteville, South Carolina, chlorine spill. J. Emerg. Nurs. 40(5):453–460, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  164. He, C., Fan, X., and Li, Y., Toward Ubiquitous Healthcare Services With a el Efficient Cloud Platform. IEEE Trans. Biomed. Eng. 60(1):230–234, 2013.

    Article  PubMed  Google Scholar 

  165. Mazomenos, E. B. et al., A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Heal. Info. 17(2):459–469, 2013.

    Article  Google Scholar 

  166. B. Klimova, Mobile Health Devices for Aging Population Groups: A Review Study. vol. 9847, M. Younas, I. Awan, N. Kryvinska, C. Strauss, and D. van Thanh, Eds. Cham: Springer International Publishing. 295–301, 2016.

  167. Chung, Y., and Liu, C., Design of a Wireless Sensor Network Platform for Tele-Homecare. Sensors 13(12):17156–17175, 2013.

    Article  PubMed  Google Scholar 

  168. Sun, J., Guo, Y., Wang, X., and Zeng, Q., mHealth For Aging China: Opportunities and Challenges. Aging Dis. 7(1):53, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  169. G. Palozzi, D. Binci, and A. Appolloni, E-Health and Co-production: Critical Drivers for Chronic Diseases Management Models, Strategies, Tools. 2017.

  170. Sparks, R., Celler, B., Okugami, C., Jayasena, R., and Varnfield, M., Telehealth Monitoring of Patients in the Community. J. Intell. Syst. 25(1):37–53, 2016.

    Google Scholar 

  171. Touati, F., and Tabish, R., U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 37(3):9949, 2013.

    Article  PubMed  Google Scholar 

  172. Kaiser Family Foundation, Trends in Health Care Costs and Spending. Health Care (Don. Mills). 650:1–2, 2009.

    Google Scholar 

  173. C. for M. and M. Services, The Affordable Care Act: helping providers help patients: a menu of options for improving care. 2015.

  174. IFRC, Disaster and crisis management. International Federation of Red Cross and Red Crescent Societies, 2015. [Online]. Available: https://www.ifrc.org/en/what-we-do/disaster-management/. [Accessed: 02--2017].

  175. Merin, O., Miskin, I. N., Lin, G., Wiser, I., and Kreiss, Y., Triage in mass-casualty events: The Haitian experience. Prehosp. Disaster Med. 26(5):386–390, 2011.

    Article  PubMed  Google Scholar 

  176. Cross, K. P., and Cicero, M. X., Head-to-Head Comparison of Disaster Triage Methods in Pediatric, Adult, and Geriatric Patients. Ann. Emerg. Med. 61(6):668–676.e7, 2013.

    Article  PubMed  Google Scholar 

  177. E. B. Lerner et al., Mass Casualty Triage: Universal Versus Specific: Lerner et al reply. Disaster Med. Public Health Prep. 3, 2009.

  178. Kanter, R. K., Strategies to improve pediatric disaster surge response: Potential mortality reduction and tradeoffs. Crit. Care Med. 35(12):2837–2842, 2007.

    Article  PubMed  Google Scholar 

  179. Kelen, G. D. et al., Creation of Surge Capacity by Early Discharge of Hospitalized Patients at Low Risk for Untoward Events. Disaster Med. Public Health Prep. 3:S10–S16, 2009.

    Google Scholar 

  180. Nager, A. L., and Khanna, K., Emergency department surge: Models and practical implications. J. Trauma Acute Care Surg. 67(2):S96–S99, 2009.

    Article  Google Scholar 

  181. Cicero, M. X. et al., Do you see what i see? Insights from using Google glass for disaster telemedicine triage. Prehosp. Disaster Med. 30(1):4–8, 2015.

    Article  PubMed  Google Scholar 

  182. Chung, S., and Shannon, M., Reuniting children with their families during disasters: A proposed plan for greater success. Am. J. Disaster Med. 2(3):113–117, 2007.

    PubMed  Google Scholar 

  183. Wallis, L. A., and Carley, S., Comparison of paediatric major incident priy triage tools. Emerg. Med. J. 23(6):475–478, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Xiong, W., Bair, A., Sandrock, C., Wang, S., Siddiqui, J., and Hupert, N., Implementing telemedicine in medical emergency response: Concept of operation for a regional telemedicine hub. J. Med. Syst. 36(3):1651–1660, 2012.

    Article  PubMed  Google Scholar 

  185. Nodhturft, V. et al., Chronic disease self-management. Nurs. Clin. North. Am. 35:507–518, 2000.

    PubMed  CAS  Google Scholar 

  186. A. A. Zaidan et al., A survey on communication components for IoT-based technologies in st homes. Telecom. Syst. 1–25, 2018.

  187. Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M., A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1):21, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Sockolow, P. S., Bowles, K. H., Adelsberger, M. C., Chittams, J. L., and Liao, C., Impact of homecare electronic health record on timeliness of clinical documentation, reimbursement, and patient outcomes. Appl. Clin. Inform. 5(2):445, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Durisko, C., McCue, M., Doyle, P. J., Dickey, M. W., and Fiez, J. A., A flexible and integrated system for the remote Acquisition of Neuropsychological Data in stroke research. Telemed. e-Health 22(12):1032–1040, 2016.

    Article  Google Scholar 

  190. Bernocchi, P. et al., Healthcare continuity from hospital to territory in Lombardy: TELEMACO project. Am. J. Manag. Care 18(3):101–108, 2012.

    Google Scholar 

  191. Okura, T. et al., The Importance of Walking for Control of Blood Pressure: Proof Using a Telemedicine System. Telemed. e-Health 22(12):1019–1023, 2016.

    Article  Google Scholar 

  192. Alsalem, M. A. et al., A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput. Methods Prog. Biomed. 158:93–112, 2018.

    Article  CAS  Google Scholar 

  193. Miao, F., Cheng, Y., He, Y., He, Q., and Li, Y., A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Stphone. Sensors 15(5):11465–11484, 2015.

    Article  PubMed  Google Scholar 

  194. Cohn, J. N., Current therapy of the failing heart. Circulation 78(5):1099–1107, 1988.

    Article  PubMed  CAS  Google Scholar 

  195. Nguyen, T., Khosravi, A., Creighton, D., and Nahavandi, S., Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Syst. Appl. 42(4):2184–2197, 2015.

    Article  Google Scholar 

  196. Brunetti, N. D. et al., Telemedicine for cardiovascular disease continuum: A position paper from the Italian Society of Cardiology Working Group on Telecardiology and informatics. Int. J. Cardiol. 184:452–458, 2015.

    Article  PubMed  Google Scholar 

  197. Winkler, S. et al., A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology—Feasibility study. Int. J. Cardiol. 153(1):55–58, 2011.

    Article  PubMed  Google Scholar 

  198. Klersy, C., De Silvestri, A., Gabutti, G., Regoli, F., and Auricchio, A., A meta-analysis of remote monitoring of heart failure patients. J. Am. Coll. Cardiol. 54(18):1683–1694, 2009.

    Article  PubMed  Google Scholar 

  199. Zhang, J., Goode, K. M., Cuddihy, P. E., and Cleland, J. G. F., Predicting hospitalization due to worsening heart failure using daily weight measurement: Analysis of the trans-European network-home-care management system (TEN-HMS) study. Eur. J. Heart Fail. 11(4):420–427, 2009.

    Article  PubMed  Google Scholar 

  200. A. A. Zaidan et al., A review on stphone skin cancer diagnosis apps in evaluation and benchking: coherent taxonomy, open issues and recommendation pathway solution. Health Technol. (Berl). 1–16, 2018.

  201. Azeez, D., Ali, M. A. M., Gan, K. B., and Saiboon, I., Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. Springerplus 2(1):416, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Brunetti, N. D., Dellegrottaglie, G., Di Giuseppe, G., Antonelli, G., and Di Biase, M., All for one, one for all: Remote telemedicine hub pre-hospital triage for public Emergency Medical Service 1–1-8 in a regional network for priy PCI in Apulia, Italy. Eur. Res. Telemedicine/La Rech. Eur. en Téléméine 3(1):9–15, 2014.

    Article  Google Scholar 

  203. Merzougui, R., Adaptation of an intelligent mobile assistant medical (IMAM) of the heterogeneous data for the telemedicine services: Design and implementation. Wirel. Pers. Commun. 84(4):3091–3107, 2015.

    Article  Google Scholar 

  204. Ashour, O. M., and Okudan, G. E., Fuzzy AHP and utility theory based patient sorting in emergency departments. Int. J. Collab. Enterp. 1(3–4):332–358, 2010.

    Article  Google Scholar 

  205. Salman, O. H., Zaidan, A. A., and Zaidan, B. B., Naserkalid, and M. Hashim, el Methodology for Triage and Prioritizing Using ‘Big Data’ Patients with Chronic Heart Diseases Through Telemedicine Environmental. Int. J. Inf. Technol. is. Mak. 16(05):1211–1245, 2017.

    Article  Google Scholar 

  206. Kamali, B., Bish, D., and Glick, R., Optimal service order for mass-casualty incident response. Eur. J. Oper. Res., 2017.

  207. M. Mandava, C. Lubamba, A. Ismail, A. Bagula, and H. Bagula, Cyber-healthcare for public healthcare in the developing world. in Proceedings - IEEE Symposium on Computers and Communications. 2016; 14–19. 2016.

  208. A. Bagula, C. Lubamba, M. Mandava, H. Bagula, M. Zennaro, and E. Pietrosemoli, CLOUD BASED PATIENT PRIORITIZATION AS SERVICE IN PUBLIC HEALTH CARE ISAT Laboratory , Computer Science Department , University of The Western Cape ( UWC ), Private Bag X17 , Bellville , 7535 , South Africa. Email : abagula@uwc.ac.za Department of Public. 2016.

  209. Mills, A. F., A simple yet effective ision support policy for mass-casualty triage. Eur. J. Oper. Res. 253(3):734–745, 2016.

    Article  Google Scholar 

  210. P. Sarkar and D. Sinha, An approach to continuous pervasive care of remote patients based on priority based assignment of nurse. in IFIP International Conference on Computer Information Systems and Industrial Management. 327–338, 2014.

  211. Childers, A. K., Orga, M. E., and Taaffe, K. M., Prioritization strategies for patient evacuations. Health Care Manag. Sci. 17(1):77–87, 2014.

    Article  PubMed  Google Scholar 

  212. Mills, A. F., Argon, N. T., and Ziya, S., Resource-based patient prioritization in mass-casualty incidents. Manuf. Serv. Oper. Manag. 15(3):361–377, 2013.

    Article  Google Scholar 

  213. Sung, W.-T., and Chang, K.-Y., Evidence-based multi-sensor information fusion for remote health care systems. Sensors Actuators A Phys. 204:1–19, 2013.

    Article  CAS  Google Scholar 

  214. Jacobson, E. U., Argon, N. T., and Ziya, S., Priority assignment in emergency response. Oper. Res. 60(4):813–832, 2012.

    Article  Google Scholar 

  215. A. Kashiyama, A. Uchiyama, and T. Higashino, Depth Limited Treatment Planning and Scheduling for Electronic Triage System in MCI. in Wireless Mobile Communication and Healthcare, Springer. 224–233, 2012.

  216. A. Childers, G. Visagamurthy, and K. Taaffe, Prioritizing patients for evacuation from a health-care facility. Transp. Res. Rec. J. Transp. Res. Board. (2137): 38–45, 2009.

  217. Argon, N. T., Ziya, S., and Righter, R., Scheduling impatient jobs in a clearing system with insights on patient triage in mass casualty incidents. Probab. Eng. Info. Sci. 22(03):301–332, 2008.

    Google Scholar 

  218. Christensen, D., Jensen, N. M., Maaløe, R., Rudolph, S. S., Belhage, B., and Perrild, H., Nurse-administered early warning score system can be used for emergency department triage. Dan. Med. Bull. 58(6):A4221, 2011.

    PubMed  Google Scholar 

  219. Hung, C. Y., Chang, P. Y., and Huang, Y. H., Comparison of fuzzy-based MCDM and non-fuzzy MCDM in setting a new fee schedule for orthopedic procedures in Taiwan’s national health insurance program. WSEAS Trans. Math. 5(1):149–153, 2006.

    Google Scholar 

  220. R. Beveridge et al., Implementation Guidelines for The Canadian Emergency Department Triage & Acuity Scale ( CTAS ) - endorsed by the Canadian Association of Emergency Physicians, the National Emergency Nurses Affiliation of Canada, and l’association des meins d’urgence du. Can. Assoc. Emerg. Physicians. 1–32, 1998.

  221. Zarabzadeh, A. et al., Variation in health care providers’ perceptions: ision making based on patient vital signs. J. Syst. 22(3):168–189, 2013.

    Google Scholar 

  222. Widgren, B. R., and Jourak, M., Medical Emergency Triage and Treatment System (METTS): A New Protocol in Priy Triage and Secondary Priority ision in Emergency Medicine. J. Emerg. Med. 40(6):623–628, 2011.

    Article  PubMed  Google Scholar 

  223. Zachariasse, J. M. et al., Validity of the Manchester triage system in emergency care: A prospective observational study. PLoS One 12(2):1–14, 2017.

    Article  CAS  Google Scholar 

  224. D. Christensen, N. M. Jensen, R. Maaløe, S. S. Rudolph, B. Belhage, and H. Perrild, Low compliance with a validated system for emergency department triage. Dan. Med. Bull. 58(6):A4294, 2011.

  225. Lerner, E. B. et al., Mass casualty triage: An evaluation of the science and refinement of a National Guideline. Disaster Med. Public Health Prep. 5(02):129–137, 2011.

    Article  PubMed  Google Scholar 

  226. Benson, M., Koenig, K. L., and Schultz, C. H., Disaster triage: START, then SAVE—A new method of dynamic triage for victims of a catastrophic earthquake. Prehosp. Disaster Med. 11(02):117–124, 1996.

    Article  PubMed  Google Scholar 

  227. Hodgetts, T. J., Hall, J., Maconochie, I., and St, C., Paediatric triage tape. Pre-hospital Immed. Care 2:155–159, 1998.

    Google Scholar 

  228. Wiseman, D. B., Ellenbogen, R., and Shaffrey, C. I., Triage for the neurosurgeon.. Neurosurg. Focus 12(3):E5, 2002.

    Google Scholar 

  229. N. Gilboy, P. Tanabe, D. Travers, and A. M. Rosenau, Emergency Severity Index (ESI): a triage tool for emergency department care, version 4. Implement. Handb. 12–14, 2012.

  230. P. Moore, A. Thomas, T. Qassem, N. Bessis, and B. Hu, Monitoring Patients with Mental Disorders. in 2015 9th International Conference on Inative Mobile and Internet Services in Ubiquitous Computing. 65–70, 2015.

  231. W. H. Organization, Surgical care at the district hospital. World Health Organization, 2003.

  232. C. D. Johnson and I. Taylor, Recent Advances in Surgery 27, vol. 27. CRC Press, 2004.

  233. “best dors.” [Online]. Available: https://bestdors.com/. [Accessed: 05--2017].

  234. Zanjal, S. V., and Talmale, G. R., Medicine reminder and monitoring system for secure health using IOT. Proc. Comput. Sci. 78(3):471–476, 2016.

    Article  Google Scholar 

  235. R. L. Keeney and H. Raiffa, Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press, 1993.

  236. Belton, V., and Stewart, T. J., Multiple criteria ision analysis. Boston: Springer US, 2002.

    Book  Google Scholar 

  237. J. Malczewski, GIS and multicriteria ision analysis. Wiley, 1999.

  238. S. Petrovic-Lazarevic and A. Abraham, Hybrid fuzzy-linear programming approach for multi criteria ision making problems. arXiv Prepr. cs/0405019, 2004.

  239. Zionts, S., MCDM—If not a roman numeral, then what? Interfaces (Providence). 9(4):94–101, 1979.

    Article  Google Scholar 

  240. M. Oliveira, D. B. M. M. Fontes, and T. Pereira, Multicriteria ision making: a case study in the automobile industry. in International Symposium on Operational Research and Applications (ISORAP2013), 2013.

  241. A. Jadhav and R. Sonar, Analytic Hierarchy Process (AHP), Weighted Scoring Method (WSM), and Hybrid Knowledge Based System (HKBS) for Software Selection: A Comparative Study. in Emerging Trends in Engineering and Technology (ICETET), 2009 2nd International Conference on. 991–997, 2009.

  242. Diaby, V., Campbell, K., and Goeree, R., Multi-criteria ision analysis (MCDA) in health care: A bibliometric analysis. Oper. Res. Heal. Care 2(1):20–24, 2013.

    Article  Google Scholar 

  243. Thokala, P. et al., Multiple criteria ision analysis for health care ision making—An introduction: Report 1 of the ISPOR MCDA emerging good practices task force. Value Health 19(1):1–13, 2016.

    Article  PubMed  Google Scholar 

  244. Adunlin, G., Diaby, V., and Xiao, H., Application of multicriteria ision analysis in health care: A systematic review and bibliometric analysis. Health Expect. 18(6):1894–1905, 2015.

    Article  PubMed  Google Scholar 

  245. Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., and Bahbibi, R., ision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement 118:83–95, 2018.

    Article  Google Scholar 

  246. Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Rahmatullah, B., and Abdul Karim, H., Comprehensive insights into evaluation and benchking of real-time skin detectors: Review, open issues & challenges, and recommended solutions. Measurement 114:243–260, 2018.

    Article  Google Scholar 

  247. Zaidan, B. B., Zaidan, A. A., Abdul Karim, H., and Ahmad, N. N., A new approach based on multi-dimensional evaluation and benchking for data hiding techniques. Int. J. Inf. Technol. is. Mak.:1–42, 2017.

  248. Zaidan, B. B., and Zaidan, A. A., Software and hardware FPGA-based digital waterking and steganography approaches: Toward new methodology for evaluation and benchking using multi-criteria ision-making techniques. J. Circuits, Syst. Comput. 26(07):1750116, 2017.

    Article  Google Scholar 

  249. Zaidan, B. B., and Zaidan, A. A., Comparative study on the evaluation and benchking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement 117:277–294, 2018.

    Article  Google Scholar 

  250. Mühlbacher, A. C., and Kaczynski, A., Making good isions in healthcare with multi-criteria ision analysis: The use, current research and future development of MCDA. Appl. Health Econ. Health Policy 14(1):29–40, 2016.

    Article  PubMed  Google Scholar 

  251. Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A. A., and Zaidan, B. B., An evaluation and selection problems of OSS-LMS packages. Springerplus 5(1):248, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Zhu, G., Hu, J., Qi, J., Gu, C., and Peng, Y., An integrated AHP and VIKOR for design concept evaluation based on rough number. Adv. Eng. Inform. 29(3):408–418, 2015.

    Article  Google Scholar 

  253. F. M. Jumaah, A. A. Zaidan, B. B. Zaidan, R. Bahbibi, M. Y. Qahtan, and A. Sali, Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecomm. Syst. 1–19, 2017.

  254. Kiah, M. L. M., Haiqi, A., Zaidan, B. B., and Zaidan, A. A., Open source EMR software: Profiling, insights and hands-on analysis. Comput. Methods Prog. Biomed. 117(2):360–382, 2014.

    Article  CAS  Google Scholar 

  255. Yas, Q. M., Zadain, A. A., Zaidan, B. B., Lakulu, M. B., and Rahmatullah, B., Towards on develop a framework for the evaluation and benchking of skin detectors based on artificial intelligent models using multi-criteria ision-making techniques. Int. J. Pattern Recognit. Artif. Intell. 31(03):1759002, 2017.

    Article  Google Scholar 

  256. Opricovic, S., and Tzeng, G.-H., Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2):445–455, 2004.

    Article  Google Scholar 

  257. Nilsson, H., Nordström, E.-M., and Öhman, K., ision support for participatory forest planning using AHP and TOPSIS. Forests 7(5):100, 2016.

    Article  Google Scholar 

  258. Saaty, T. L., and Ozdemir, M. S., Why the magic number seven plus or minus two. Math. Comput. Model. 38(3–4):233–244, 2003.

    Article  Google Scholar 

  259. Ortíz, M. A., Cómbita, J. P., la Hoz, Á. l. A. D., De Felice, F., and Petrillo, A., An integrated approach of AHP-DEMATEL methods applied for the selection of allied hospitals in outpatient service. Int. J. Med. Eng. Inform. 8(2):87–107, 2016.

    Article  Google Scholar 

  260. Barrios, M. A. O., De Felice, F., Negrete, K. P., Romero, B. A., Arenas, A. Y., and Petrillo, A., An AHP-Topsis integrated model for selecting the most appropriate tomography equipment. Int. J. Inf. Technol. is. Mak. 15(04):861–885, 2016.

    Article  Google Scholar 

  261. Çalışkan, H., Selection of boron based tribological hard coatings using multi-criteria ision making methods. Mater. Des. 50:742–749, 2013.

    Article  CAS  Google Scholar 

  262. Fu, H.-P., Chu, K.-K., Chao, P., Lee, H.-H., and Liao, Y.-C., Using fuzzy AHP and VIKOR for benchking analysis in the hotel industry. Serv. Ind. J. 31(14):2373–2389, 2011.

    Article  Google Scholar 

  263. Albahri, O. S. et al., Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations. J. Med. Syst. 42(5):80, 2018.

    Article  PubMed  CAS  Google Scholar 

  264. Ilangkuan, M., Sasirekha, V., Anojku, L., and Raja, M. B., Machine tool selection using AHP and VIKOR methodologies under fuzzy environment. Int. J. Model. Oper. Manag. 2(4):409, 2012.

    Google Scholar 

  265. Aktan, H. E., and Samut, P. K., Agricultural performance evaluation by integrating fuzzy AHP and VIKOR methods. Int. J. Appl. Sci. 6(4):324, 2013.

    Google Scholar 

  266. Y. Yamamoto, Adding a dummy data or discarding a portion of data in a bus repeater buffer memory for a second data transfer to a second bus. Google Patents, 2002.

  267. J.-M. Lee, H.-G. Lee, S.-C. Lee, H. Cho, and S.-T. Kim, Liquid crystal display with dummy data driving to produce edge column compensation. Google Patents, 1999.

  268. V. Sherekar, M. Tatikonda, and M. Student, Impact of Factor Affecting on Labour Productivity in Construction Projects by AHP Method. Int. J. Eng. Sci. Comput. 6, 2016.

  269. Miyahara, S., Tsuji, M., Iizuka, C., Hasegawa, T., and Taoka, F., On the evaluation of economic benefits of Japanese telemedicine and factors for its promotion. Telemed. J. e-Health 12(6):691–697, 2006.

    Article  PubMed  Google Scholar 

  270. Connell, F. A., Diehr, P., and Hart, L. G., The use of large data bases in health care studies. Annu. Rev. Public Health 8(1):51–74, 1987.

    Article  PubMed  CAS  Google Scholar 

  271. Lahby, M., Cherkaoui, L., and Adib, A., A el ranking algorithm based network selection for heterogeneous wireless access. JNW 8(2):263–272, 2013.

    Article  Google Scholar 

  272. Saksrisathaporn, K., Bouras, A., Reeveerakul, N., and Charles, A., Application of a ision model by using an integration of AHP and TOPSIS approaches within humanitarian operation life cycle. Int. J. Inf. Technol. is. Mak. 15(04):887–918, 2016.

    Article  Google Scholar 

  273. Saaty, T. L., A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3):234–281, 1977.

    Article  Google Scholar 

  274. Wind, Y., and Saaty, T. L., keting applications of the analytic hierarchy process. Manag. Sci. 26(7):641–658, 1980.

    Article  Google Scholar 

  275. T. L. Saaty, The Analytic Hierarchy Process, New York: McGrew Hill. Int. Transl. to Russ. Port. Chinese, Revis. Ed. Paperb. (1996, 2000), Pittsburgh RWS Publ., 1980.

Further Reading

  1. Mohaghar, A., Fathi, M. R., Zarchi, M. K., and Omidian, A., A Combined VIKOR – Fuzzy AHP Approach to keting Strategy Selection. Bus. Manag. Strateg. 3:1, 1969.

    Google Scholar 

  2. Chang, T.-H., and method, F. V. I. K. O. R., A case study of the hospital service evaluation in Taiwan. Inf. Sci. (Ny). 271:196–212, 2014.

    Article  Google Scholar 

  3. Qader, M. A., Zaidan, B. B., Zaidan, A. A., Ali, S. K., Kamaluddin, M. A., and Radzi, W. B., A methodology for football players selection problem based on multi-measurements criteria analysis. Meas. J. Int. Meas. Confed. 111:38–50, 2017.

    Article  Google Scholar 

  4. Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., and Abdulnabi, M., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53:390–404, 2015.

    Article  PubMed  CAS  Google Scholar 

  5. M. Mansooreh and J. Pet-Edwards, Technical Briefing: Making Multiple-Objective isions. Inst. Electr. ve Electron. Eng. Inc., IEEE Comput. Soc. Press. USA, 1997.

  6. Triantaphyllou, E., Multi-criteria ision making methods: A comparative study. 44th edition. Boston: Springer US, 2000.

    Book  Google Scholar 

  7. Aruldoss, M., Lakshmi, T. M., and Venkatesan, V. P., A survey on multi criteria ision making methods and its applications. Am. J. Inf. Syst. 1(1):31–43, 2013.

    Google Scholar 

  8. K. P. Yoon and C.-L. Hwang, Multiple attribute ision making: an introduction, vol. 104. Sage publications, 1995.

  9. Triantaphyllou, E., Shu, B., Sanchez, S. N., and Ray, T., Multi-criteria ision making: an operations research approach. Encycl. Electr. Electron. Eng. 15(1998):175–186, 1998.

    Google Scholar 

Download references

Funding

This study was funded by UPSI grant No: 2017–0179–109-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zaidan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Appendix

Appendix

Table 22 Design of AHP steps for the weight preferences for Package 1
Table 23 Design of AHP steps for the weight preferences for Package 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albahri, O.S., Zaidan, A.A., Zaidan, B.B. et al. Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects. J Med Syst 42, 164 (2018). https://doi.org/10.1007/s10916-018-1006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1006-6

Keywords

Navigation