Skip to main content

Advertisement

Log in

A Novel Wavelet Transform-Homogeneity Model for Sudden Cardiac Death Prediction Using ECG Signals

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Sudden cardiac death (SCD) is one of the main causes of death among people. A new methodology is presented for predicting the SCD based on ECG signals employing the wavelet packet transform (WPT), a signal processing technique, homogeneity index (HI), a nonlinear measurement for time series signals, and the Enhanced Probabilistic Neural Network classification algorithm. The effectiveness and usefulness of the proposed method is evaluated using a database of measured ECG data acquired from 20 SCD and 18 normal patients. The proposed methodology presents the following significant advantages: (1) compared with previous works, the proposed methodology achieves a higher accuracy using a single nonlinear feature, HI, thus requiring low computational resource for predicting an SCD onset in real-time, unlike other methodologies proposed in the literature where a large number of nonlinear features are used to predict an SCD event; (2) it is capable of predicting the risk of developing an SCD event up to 20 min prior to the onset with a high accuracy of 95.8%, superseding the prior 12 min prediction time reported recently, and (3) it uses the ECG signal directly without the need for transforming the signal to a heart rate variability signal, thus saving time in the processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbasi, H., Bennet, L., Gunn, A. J., and Unsworth, C. P., Robust wavelet stabilized footprints of uncertainty for fuzzy system classifiers to automatically detect sharp waves in the EEG after hypoxia ischemia. International Journal of Neural Systems 27(3):1650051, 2017 (16 pages).

    Article  PubMed  Google Scholar 

  2. Acharya, U. R., Faust, O., Kadri, N. A., Suri, J. S., and Yu, W., Automated identification of normal and diabetes heart rate signals using nonlinear measures. Computers in Biology and Medicine 43(10):1523–1529, 2013.

    Article  Google Scholar 

  3. Acharya, U. R., Fujita, H., Sudarshan, V. K., Ghista, D. N., Lim, W. J. E., & Koh, J. E. (2015a). Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals. IEEE International Conference on Systems, Man, and Cybernetics, pp. 1110-1115.

  4. Acharya, U. R., Fujita, H., Sudarshan, V. K., Sree, V. S., Eugene, L. W. J., Ghista, D. N., and San Tan, R., An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowledge-Based Systems 83:149–158, 2015b.

    Article  Google Scholar 

  5. Acharya, U. R., Bhat, S., Koh, J. E., Bhandary, S. V., and Adeli, H., A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Computers in biology and medicine 88:72–83, 2017.

    Article  PubMed  Google Scholar 

  6. Adeli, H., and Hung, S. L., Machine learning - neural networks, genetic algorithms, and fuzzy systems. New York: Wiley, 1995.

    Google Scholar 

  7. Ahmadlou, M., and Adeli, H., Enhanced probabilistic neural network with local decision circles: A robust classifier. Integrated Computer-Aided Engineering 17(3):197–210, 2010.

    Article  Google Scholar 

  8. Ahmadlou, M., and Adeli, H., Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism. Neuroscience Letters 650:103–108, 2017.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmadlou, M., Adeli, H., and Adeli, A., Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. Journal of Clinical Neurophysiology 27(5):328–333, 2010.

    Article  PubMed  Google Scholar 

  10. Ahmadlou, M., Adeli, H., and Adeli, A., Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Disease & Associated Disorders 25(1):85–92, 2011.

    Article  Google Scholar 

  11. Ahmadlou, M., Adeli, H., and Adeli, A., Fractality analysis of frontal brain in major depressive disorder. International Journal of Psychophysiology 85(2):206–211, 2012a.

    Article  PubMed  Google Scholar 

  12. Ahmadlou, M., Adeli, H., and Adeli, A., Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder. Journal of Neuroscience Methods 211(2):203–209, 2012b.

    Article  PubMed  Google Scholar 

  13. Ahmadlou, M., Adeli, A., Bajo, R., and Adeli, H., Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task. Clinical Neurophysiology 125(4):694–702, 2014.

    Article  PubMed  Google Scholar 

  14. Akar, S. A., Kara, S., Latifoğlu, F., and Bilgiç, V., Analysis of the complexity measures in the EEG of schizophrenia patients. International Journal of Neural Systems 26(02):1650008, 2016 (13 pages).

    Article  PubMed  Google Scholar 

  15. Alhasan, A., White, D. J., and Brabanter, K., Wavelet filter design for pavement roughness analysis. Computer-Aided Civil and Infrastructure Engineering 31(12):907–920, 2016.

    Article  Google Scholar 

  16. Amezquita-Sanchez, J. P., and Adeli, H., Signal processing techniques for vibration-based health monitoring of smart structures. Archives of Computational Methods in Engineering 23(1):1–15, 2016.

    Article  Google Scholar 

  17. Amezquita-Sanchez, J. P., Adeli, A., and Adeli, H., A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG). Behavioural Brain Research 305:174–180, 2016.

    Article  PubMed  Google Scholar 

  18. Beura, S., Majhi, B., and Dash, R., Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 154:1–14, 2015.

    Article  Google Scholar 

  19. Bruder, J. C., Dümpelmann, M., Piza, D. L., Mader, M., Schulze-Bonhage, A., & Jacobs-Le Van, J. (2017). Physiological ripples associated with sleep spindles differ in waveform morphology from epileptic ripples. International Journal of Neural Systems, 27(07), 1750011 (15 pages)

  20. Cabal-Yepez, E., Valtierra-Rodriguez, M., Romero-Troncoso, R. J., Garcia-Perez, A., Osornio-Rios, R. A., Miranda-Vidales, H., and Alvarez-Salas, R., FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Mechanical Systems and Signal Processing 30:123–130, 2012.

    Article  Google Scholar 

  21. Dai, H., and Cao, Z., A wavelet support vector machine-based neural network Metamodel for structural reliability assessment. Computer-Aided Civil and Infrastructure Engineering 32(4):344–357, 2017.

    Article  Google Scholar 

  22. Darbin, O., Jin, X., Von Wrangel, C., Schwabe, K., Nambu, A., Naritoku, D. K. et al., Neuronal entropy-rate feature of entopeduncular nucleus in rat model of Parkinson’s disease. International Journal of Neural Systems 26(02):1550038, 2016 (11 pages).

    Article  PubMed  Google Scholar 

  23. Daubechies, I. (1992). Ten lectures on wavelets (Vol. 61). Siam.

  24. De Cooman, T., Varon, C., Hunyadi, B., Van Paesschen, W., Lagae, L., and Van Huffel, S., Online automated seizure detection in temporal lobe epilepsy patients using single-lead ECG. International Journal of Neural Systems 27(07):1750022, 2017 (17 pages).

    Article  PubMed  Google Scholar 

  25. Direito, B., Teixeira, C. A., Sales, F., Castelo-Branco, M., and Dourado, A., A realistic seizure prediction study based on multiclass SVM. International Journal of Neural Systems 27(03):1750006, 2017 (15 pages).

    Article  PubMed  Google Scholar 

  26. Ebrahimzadeh, E., and Pooyan, M., Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals. Journal of Biomedical Science and Engineering 4(11):699, 2011.

    Article  Google Scholar 

  27. Ebrahimzadeh, E., Pooyan, M., and Bijar, A., A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PloS one 9(2):e81896, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ebrahimzadeh, E., Manuchehri, M. S., Amoozegar, S., Araabi, B. N., & Soltanian-Zadeh, H. (2017). A time local subset feature selection for prediction of sudden cardiac death from ECG signal. Medical & biological engineering & computing, pp. 1-18.

  29. Finocchiaro, G., Papadakis, M., Sharma, S., and Sheppard, M., Sudden cardiac death. European Heart Journal 38(17):1280–1282, 2017.

    Article  PubMed  Google Scholar 

  30. Fujita, H., Acharya, U. R., Sudarshan, V. K., Ghista, D. N., Sree, S. V., Eugene, L. W. J., and Koh, J. E., Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Applied Soft Computing 43:510–519, 2016.

    Article  Google Scholar 

  31. Fujiwara, K., Miyajima, M., Yamakawa, T., Abe, E., Suzuki, Y., Sawada, Y., and Sasano, T., Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features. IEEE Transactions on Biomedical Engineering 63(6):1321–1332, 2016.

    Article  PubMed  Google Scholar 

  32. Gao, Z. K., Cai, Q., Yang, Y. X., Dong, N., and Zhang, S. S., Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG. International Journal of Neural Systems 27(04):1750005, 2017 (12 pages).

    Article  PubMed  Google Scholar 

  33. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Graña, M., Ozaeta, L., and Chyzhyk, D., Resting state effective connectivity allows auditory hallucination discrimination. International Journal of Neural Systems 27(05):1750019, 2017 (15 pages).

    Article  PubMed  Google Scholar 

  35. Guo, L., Wang, Z., Cabrerizo, M., and Adjouadi, M., A cross-correlated delay shift supervised learning method for spiking neurons with application to interictal spike detection in epilepsy. International Journal of Neural Systems 27(03):1750002, 2017 (19 pages).

    Article  PubMed  Google Scholar 

  36. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J. A., and Altamirano-Robles, L., A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Physics & Technology 81:242–249, 2017.

    Article  Google Scholar 

  37. Hirschauer, T. J., Adeli, H., and Buford, J. A., Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. Journal of Medical Systems 39(11):179, 2015.

    Article  PubMed  Google Scholar 

  38. Jiang, X., and Adeli, H., Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Computer-Aided Civil and Infrastructure Engineering 19(5):324–337, 2004.

    Article  Google Scholar 

  39. Jiang, X., Mahadevan, S., and Adeli, H., Bayesian wavelet packet denoising for structural system identification. Structural Control and Health Monitoring 14(2):333–356, 2007.

    Article  Google Scholar 

  40. Jonmohamadi, Y., Poudel, G. R., Innes, C. C., and Jones, R. D., Microsleeps are associated with Stage-2 sleep spindles from hippocampal-temporal network. International Journal of Neural Systems 26(04):1650015, 2016 (12 pages).

    Article  PubMed  Google Scholar 

  41. Khedher, L., Illán, I. A., Górriz, J. M., Ramírez, J., Brahim, A., and Meyer-Baese, A., Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support. International Journal of Neural Systems 27(03):1650050, 2017 (18 pages).

    Article  PubMed  Google Scholar 

  42. delEtoile, J., and Adeli, H., Graph theory and brain connectivity in Alzheimer’s disease. The Neuroscientist 23:616–626, 2017.

    Article  PubMed  Google Scholar 

  43. Lizarraga-Morales, R. A., Rodriguez-Donate, C., Cabal-Yepez, E., Lopez-Ramirez, M., Ledesma-Carrillo, L. M., and Ferrucho-Alvarez, E. R., Novel FPGA-based methodology for early broken rotor bar detection and classification through homogeneity estimation. IEEE Transactions on Instrumentation and Measurement 66(7):1760–1769, 2017.

    Article  Google Scholar 

  44. López-Sanz, D., Garcés, P., Álvarez, B., Delgado-Losada, M. L., López-Higes, R., and Maestú, F., Network disruption in the preclinical stages of Alzheimer’s disease: From subjective cognitive decline to mild cognitive impairment. International journal of neural systems 27(08):1750041, 2017 (21 pages).

    Article  PubMed  Google Scholar 

  45. Mammone, N., Bonanno, L., Salvo, S. D., Marino, S., Bramanti, P., Bramanti, A., and Morabito, F. C., Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients. International Journal of Neural Systems 27(05):1750020, 2017 (19 pages).

    Article  PubMed  Google Scholar 

  46. Martinez-Murcia, F. J., Górriz, J. M., Ramírez, J., and Ortiz, A., A structural parametrization of the brain using hidden Markov models-based paths in Alzheimer’s disease. International Journal of Neural Systems 26(07):1650024, 2016 (15 pages).

    Article  PubMed  Google Scholar 

  47. Martis, R. J., Acharya, U. R., and Adeli, H., Current methods in electrocardiogram characterization. Computers in Biology and Medicine 48:133–149, 2014.

    Article  PubMed  Google Scholar 

  48. Mirhoseini, S. R., JahedMotlagh, M. R., & Pooyan, M. (2016). Improve accuracy of early detection sudden cardiac deaths (SCD) using decision forest and SVM. IEEE proceedings on International Conference on Robotics and Artificial Intelligence (ICRAI2016), Los Angeles, USA, April 20-22, 2016, pp. 1-5.

  49. MIT/BIH-NSR (2018), https://www.physionet.org/physiobank/database/nsrdb/, database accessed January 1, 2018.

  50. MIT/BIH-SCDH (2018), https://physionet.org/physiobank/database/sddb/#clinical-information/databased accessed January 1, 2018.

  51. Morabito, F. C., Campolo, M., Mammone, N., Versaci, M., Franceschetti, S., Tagliavini, F., and Mumoli, L., Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia. International journal of neural systems 27(02):1650039, 2017 (15 pages).

    Article  PubMed  Google Scholar 

  52. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., and Alzheimer’s Disease Neuroimaging Initiative, Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage 104:398–412, 2015.

    Article  PubMed  Google Scholar 

  53. Muller, J. E., Ludmer, P. L., Willich, S. N., Tofler, G. H., Aylmer, G., Klangos, I., and Stone, P. H., Circadian variation in the frequency of sudden cardiac death. Circulation 75(1):131–138, 1987.

    Article  CAS  PubMed  Google Scholar 

  54. Murugappan, M., Murukesan, L., Omar, I., Khatun, S., and Murugappan, S., Time domain features based sudden cardiac arrest prediction using machine learning algorithms. Journal of Medical Imaging and Health Informatics 5(6):1267–1271, 2015.

    Article  Google Scholar 

  55. Murukesan, L., Murugappan, M., Iqbal, M., and Saravanan, K., Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. Journal of Medical Imaging and Health Informatics 4(4):521–532, 2014.

    Article  Google Scholar 

  56. Myerburg, R. J., Cardiac arrest and sudden cardiac death. Heart disease, a textbook of cardiovascular. Medicine 1:756–789, 1992.

    Google Scholar 

  57. Myerburg, R. J., and Junttila, M. J., Sudden cardiac death caused by coronary heart disease. Circulation 125(8):1043–1052, 2012.

    Article  PubMed  Google Scholar 

  58. Ordaz-Moreno, A., de Jesus Romero-Troncoso, R., Vite-Frias, J. A., Rivera-Gillen, J. R., and Garcia-Perez, A., Automatic online diagnosis algorithm for broken-bar detection on induction motors based on discrete wavelet transform for FPGA implementation. IEEE Transactions on Industrial Electronics 55(5):2193–2202, 2008.

    Article  Google Scholar 

  59. Ortiz, A., Munilla, J., Gorriz, J. M., and Ramirez, J., Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. International Journal of Neural Systems 26(07):1650025, 2016.

    Article  PubMed  Google Scholar 

  60. Pagidipati, N. J., and Gaziano, T. A., Estimating deaths from cardiovascular disease: A review of global methodologies of mortality measurement. Circulation 127(6):749–756, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pakyari, R., and Balakrishnan, N., A general purpose approximate goodness-of-fit test for progressively type-II censored data. IEEE Transactions on Reliability 61(1):238–244, 2012.

    Article  Google Scholar 

  62. Pérez, G., Conci, A., Moreno, A. B., and Hernandez-Tamames, J. A., Rician noise attenuation in the wavelet packet transformed domain for brain MRI. Integrated Computer-Aided Engineering 21(2):163–175, 2014.

    Article  Google Scholar 

  63. Rafiee, J., Rafiee, M. A., Prause, N., and Schoen, M. P., Wavelet basis functions in biomedical signal processing. Expert Systems with Applications 38(5):6190–6201, 2011.

    Article  Google Scholar 

  64. Raka, A. G., Naik, G. R., and Chai, R., Computational algorithms underlying the time-based detection of sudden cardiac arrest via electrocardiographic markers. Applied Sciences 7(9):954, 2017.

    Article  Google Scholar 

  65. Romero-Garcia, R., Atienza, M., and Cantero, J. L., Different scales of cortical organization are selectively targeted in the progression to Alzheimer’s disease. International Journal of Neural Systems 26(02):1650003, 2016 (19 pages).

    Article  PubMed  Google Scholar 

  66. Sajedi, F., Ahmadlou, M., Vameghi, R., Gharib, M., and Hemmati, S., Linear and nonlinear analysis of brain dynamics in children with cerebral palsy. Research in Developmental Disabilities 34(5):1388–1396, 2013.

    Article  PubMed  Google Scholar 

  67. Shafique A., Sayeed M., Tsakalis K. (2018) Nonlinear Dynamical Systems with Chaos and Big Data: A Case Study of Epileptic Seizure Prediction and Control. In: Srinivasan S. (eds) Guide to Big Data Applications. Studies in Big Data, vol 26. Springer, Cham.

  68. Shen, T. W., Shen, H. P., Lin, C. H., & Ou, Y. L. (2007, August). Detection and prediction of sudden cardiac death (SCD) for personal healthcare. In: 29th Annual International Conference of the IEEE in Engineering in Medicine and Biology, Buenos Aires, 22–26 August 2007, pp. 2575–2578.

  69. Unser, M., Sum and difference histograms for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 1:118–125, 1986.

    Article  Google Scholar 

  70. Varatharajah, Y., Iyer, R. K., Berry, B. M., Worrell, G. A., and Brinkmann, B. H., Seizure forecasting and the preictal state in canine epilepsy. International Journal of Neural Systems 27(01):1650046, 2017 (12 pages).

    Article  PubMed  Google Scholar 

  71. Villar, J. R., Vergara, P., Menéndez, M., de la Cal, E., González, V. M., and Sedano, J., Generalized models for the classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition. International Journal of Neural Systems 26(06):1650037, 2016 (21 pages).

    Article  PubMed  Google Scholar 

  72. Xu, F., Zhou, W., Zhen, Y., Yuan, Q., and Wu, Q., Using fractal and local binary pattern features for motor imagery classification of ECOG motor imagery task obtained from the right brain hemisphere. International Journal of Neural Systems 26(6), 2016 (13 pages).

  73. Yuan, Q., Zhou, W., Xu, F., Leng, Y., and Wei, D., Epileptic EEG identification via LBP operators on wavelet coefficients. International Journal of Neural Systems 28:8, 2018 (16 template pages).

    Google Scholar 

  74. Zheng, Y., Wei, D., Zhu, X., Chen, W., Fukuda, K., and Shimokawa, H., Ventricular fibrillation mechanisms and cardiac restitutions: An investigation by simulation study on whole-heart model. Computers in Biology and Medicine 63:261–268, 2015.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Adeli.

Ethics declarations

This work was partially found by the Programa para el Desarrollo Profesional Docente, para el Tipo Superior (PRODEP), México, with number UAQ-PTC-335. Authors declare that they have no conflict of interest. Authors did not collect data from humans or animals. Data used in this research are from publicly-available sources.

Additional information

This article is part of the Topical Collection on Image and; Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amezquita-Sanchez, J.P., Valtierra-Rodriguez, M., Adeli, H. et al. A Novel Wavelet Transform-Homogeneity Model for Sudden Cardiac Death Prediction Using ECG Signals. J Med Syst 42, 176 (2018). https://doi.org/10.1007/s10916-018-1031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1031-5

Keywords

Navigation