Skip to main content

Advertisement

Log in

A Methodological Review of 3D Reconstruction Techniques in Tomographic Imaging

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Computer Vision has provided immense support to medical diagnostics over the past two decades. Analogous to Non Destructive Testing of mechanical parts, advances in medical imaging has enabled surgeons to determine root cause of an illness by consulting medical images particularly 3-D imaging. 3-D modeling in medical imaging has been pursued using surface rendering, volume rendering and regularization based methods. Tomographic reconstruction in 3D is different from camera based scene reconstruction which has been achieved using various techniques including minimal surfaces, level sets, snakes, graph cuts, silhouettes, multi-scale approach, patchwork etc. In tomography limitations of image aquisition method i-e CT Scan, X Rays and MRI as well as non availability of camera parameters for calibration restrict the quality of final reconstruction. In this work, a comprehensive study of related approaches has been carried out with a view to provide a summary of state of the art 3D modeling algorithms developed over the past four decades and also to provide a foundation study for our future work which will include precise 3D reconstruction of human spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dhawan, A.: Radon transform wiley encyclopedia of biomedical engineering, 2006

  2. Weisstein, E.W.: Radon Transform – from Wolfram MathWorld, Mathworld.wolfram.com. [Online]. Available: http://mathworld.wolfram.com/RadonTransform.html. [Accessed: 20- Oct- 2017], 2018

  3. Physics.stackexchange.com, Why Fields? Why do nuclei precess in magnetic fields? [online] Available at: https://physics.stackexchange.com/questions/386863/why-donucleiprecess-in-magnetic-fields [Accessed 3- Jan- 2018], 2018

  4. Mulay, C., AV, Patient Specific Bone Modeling for Minimum Invasive Spine Surgery. Journal of Spine 04:04, 2015.

    Article  Google Scholar 

  5. Garutti, E.: Index of / garutti/LECTURES/BioMedical. [online] Desy.de. Available at: http://www.desy.de/garutti/LECTURES/BioMedical/ [Accessed 3 Feb. 2018], 2014

  6. Sato, Y., Shiraga, N., Nakajima, S., Tamura, S., and Kikinis, R., Local maximum intensity projection (LMIP. J. Comput. Assist. Tomogr. 22(6):912–917, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Creedy, M.: [Online]. Available: https://mipav.cit.nih.gov/pubwiki/index.php/Maximum-Intensity-Projection. [Accessed: 02- Jan- 2018], 2012

  8. Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., and Groller, E.: CPR - Curved planar reformation, IEEE Visualization. VIS 2002, 2002

  9. Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., and Groller, E.: CPR - curved planar reformation. IEEE Visualization. VIS 2002. [Accessed: 02- Jan- 2018], 2002

  10. Whitted, T., An improved illumination model for shaded display. Commun. of the ACM 23(6):343–349, 1980.

    Article  Google Scholar 

  11. Naiwen, l.: Shaded Surface Display Technique, Csee.umbc.edu. [Online]. Available: https://www.csee.umbc.edu/ebert/693/NLiao/node5.html. [Accessed: 23- Nov- 2017], 1996

  12. Heffernan, P., and Robb, R., A new method for shaded surface display of biological and medical images. IEEE Trans. Med. Imaging 4(1):26–38, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Radiology Imaging: Shaded surface displays of ct scan abdominal, Radiology Imaging. [Online]. Available: http://radiology-information.blogspot.com/2013/03/shaded-surface-displays-of-ct-scan.html. [Accessed: 11- Dec- 2017], 2015

  14. Callahan, S., Callahan, J., Scheidegger, C., and Silva, C., Direct Volume Rendering: A 3D Plotting Technique for Scientific Data. Comput. Sci. Eng. 10(1):88–92, 2008.

    Article  CAS  Google Scholar 

  15. Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: Proceedings of the 4th annual conference on Computer graphics and interactive techniques - SIGGRAPH 77, 1977.

  16. Kajiya, J.T.: New techniques for ray tracing procedurally defined objects. In: Proceedings of the 10th annual conference on Computer graphics and interactive techniques - SIGGRAPH 83, 1983.

  17. Levoy, M., A hybrid ray tracer for rendering polygon and volume data. IEEE Comput. Graph. Appl. 10(2): 33–40, 1990.

    Article  Google Scholar 

  18. Li, G., Xie, H., Ning, H., Citrin, D., Capala, J., Maass-Moreno, R., Guion, P., Arora, B., Coleman, N., Camphausen, K., and Miller, R., Accuracy of 3D volumetric image registration based on CT, MR and PET/CT phantom experiments. J. Appl. Clin. Med. Phys. 9(4):17–36, 2008.

    Article  PubMed Central  Google Scholar 

  19. Westover, L.A., Splatting: a parallel, feed-forward volume rendering algorithm. Chapel Hill: University of North Carolina at Chapel Hill, 1992.

    Google Scholar 

  20. Celebi Tutorial, Volume Rendering, Byclb.com. [Online]. Available: https://www.byclb.com/TR/Tutorials/volume-rendering/ch1-1.htm. [Accessed: 11- Dec- 2017], 2014

  21. Lacroute, P., and Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques - SIGGRAPH 94, 1994.

  22. Lorensen, W.E., and Cline, H.E., Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4):163–169, 1987.

    Article  Google Scholar 

  23. Naiwen, L.: Shaded surface display technique. [Online]. Available: https://www.csee.umbc.edu/ebert/693/NLiao/node5.html. [Accessed: 15-Nov-2017], 1996

  24. Anderson, B.: Marching Cubes, Cs.carleton.edu. [Online]. Available: http://www.cs.carleton.edu/cs-comps/0405/shape/marching-cubes.html. [Accessed: 07- Nov- 2017]

  25. Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., and Wang, R.: 3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks. In: Proceedings of the International Conference on 3D Vision (3DV) 2017, 2017.

  26. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., and Schnabel, J.A., Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8): 1550–1564, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alansary, A., Rajchl, M., Mcdonagh, S.G., Murgasova, M., Damodaram, M., Lloyd, D.F.A., Davidson, A., Rutherford, M., Hajnal, J.V., Rueckert, D., and Kainz, B., PVR: Patch-to-volume reconstruction for large area motion correction of fetal MRI. IEEE Trans. Med. Imaging 36(10):2031–2044, 2017.

    Article  PubMed  Google Scholar 

  28. Cai, Y., Osman, S., Sharma, M., Landis, M., and Li, S., Multi-Modality Vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8):1676–1693, 2015.

    Article  PubMed  Google Scholar 

  29. Hines, T.: Spine Anatomy, Anatomy of the Human Spine. [online] Available at: https://www.mayfieldclinic.com [Accessed 15 Jan. 2018], 2016

  30. An, G., Hong, L., Zhou, X. -B., Yang, Q., Li, M. -Q., and Tang, X. -Y., Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations. Ann. Anat. Anat. Anz. 210:76–83, 2017.

    Article  Google Scholar 

  31. Mimics 5 Edit Mask in 3D pt2, YouTube. [Online]. Available: https://www.youtube.com/watch?v=xxw2klImERM. [Accessed: 10- Jan- 2018]

  32. Syngo.via for Cardiovascular Care - Siemens Healthineers Global, Healthcare.siemens.com. [Online]. Available: https://www.healthcare.siemens.com/medical-imaging-it/syngoviaspecialtopics/syngo-via-for-sustainable-cardiovascular-care/coronary-artery-disease. [Accessed: 09- Jan- 2018]

  33. Boileau, P., Cheval, D., Gauci, M., Holzer, N., Chaoui, J., and Walch, G., Automated Three-Dimensional measurement of glenoid version and inclination in arthritic shoulders. J. Bone Joint Surg. 100 (1):57–65, 2018.

    Article  PubMed  Google Scholar 

  34. Lee, S., Kim, H., Kim, H., Choi, J., and Cho, J., Comparison of image enlargement according to 3D reconstruction in a CT scan: Using an aneurysm phantom. J. Korean Phys. Soc. 72(7):805–810, 2018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Khan.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interest

Additional information

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U., Yasin, A., Abid, M. et al. A Methodological Review of 3D Reconstruction Techniques in Tomographic Imaging. J Med Syst 42, 190 (2018). https://doi.org/10.1007/s10916-018-1042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1042-2

Keywords

Navigation