Skip to main content
Log in

An Automatic Channel Selection Approach for ICA-Based Motor Imagery Brain Computer Interface

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA) is a potential spatial filtering method for the implementation of motor imagery brain-computer interface (MIBCI). However, ICA-based MIBCI (ICA-MIBCI) is sensitive to electroencephalogram (EEG) channels and the quality of the training data, which are two crucial factors affecting the stability and classification performance of ICA-MIBCI. To address these problems, this paper is mainly focused on the investigation of EEG channel optimization. As a reference, we constructed a single-trial-based ICA-MIBCI system with commonly used channels and common spatial pattern-based MIBCI (CSP-MIBCI). To minimize the impact of artifacts on EEG channel optimization, a data-quality evaluation method, named “self-testing” in this paper, was used in a single-trial-based ICA-MIBCI system to evaluate the quality of single trials in each dataset; the resulting self-testing accuracies were used for the selection of high-quality trials. Given several candidate channel configurations, ICA filters were calculated using selected high-quality trials and applied to the corresponding ICA-MIBCI implementation. Optimal channels for each dataset were assessed and selected according to the self-testing results related to various candidate configurations. Forty-eight MI datasets of six subjects were employed in this study to validate the proposed methods. Experimental results revealed that the average classification accuracy of the optimal channels yielded a relative increment of 2.8% and 8.5% during self-testing, 14.4% and 9.5% during session-to-session transfer, and 36.2% and 26.7% during subject-to-subject transfer compared to CSP-MIBCI and ICA-MIBCI with fixed the channel configuration. This work indicates that the proposed methods can efficiently improve the practical feasibility of ICA-MIBCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kevric, J., and Subasi, A., Comparison of signal decomposition methods in classification of eeg signals for motor-imagery bci system. Biomed. Signal Process. Control 31:398, 2017.

    Article  Google Scholar 

  2. Ang, K. K., Guan, C., Chua, K. S. G., Ang, B. T., Kuah, C. W. K., Wang, C., Phua, K. S., Chin, Z. Y., and Zhang, H., A large clinical study on the ability of stroke patients to use an eegbased motor imagery brain-computer interface. Clin. EEG Neurosci. 42(4):253, 2011.

    Article  Google Scholar 

  3. Abibullaev, B., and An, J., Decision support algorithm for diagnosis of ADHD using electroencephalograms. J. Med. Syst. 36(4):2675, 2012.

    Article  Google Scholar 

  4. Rodrguez-Bermdez, G., and Garca-Laencina, P. J., Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. J. Med. Syst. 36(Suppl 1):S51, 2012.

    Article  Google Scholar 

  5. Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., Low, W., and Guan, C., A randomized controlled trial of eeg-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46(4):310, 2015.

    Article  Google Scholar 

  6. Yin, E., Zhou, Z., Jiang, J., Yu, Y., and Hu, D., A dynamically optimized ssvep brain–computer interface (bci) speller. IEEE Trans. Biomed. Eng. 62(6):1447, 2015.

    Article  Google Scholar 

  7. Lin, B. S., Pan, J. S., Chu, T. Y., and Lin, B. S., Development of a wearable motor-imagery-based brainccomputer interface. J. Med. Syst. 40(3):1, 2016.

    Google Scholar 

  8. Yuan, H., and He, B., Brain–computer interfaces using sensorimotor rhythms: Current state and future perspectives. IEEE Trans. Biomed. Eng. 61(5):1425, 2014.

    Article  Google Scholar 

  9. He, B., Baxter, B., Edelman, B. J., Cline, C. C., and Wenjing, W. Y., Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc. IEEE 103(6):907, 2015 Title Suppressed Due to Excessive Length 19.

    Article  Google Scholar 

  10. Kirar, J. S., and Agrawal, R. K., Relevant feature selection from a combination of spectraltemporal and spatial features for classification of motor imagery eeg. J. Med. Syst. 42(5):78, 2018.

    Article  Google Scholar 

  11. Blankertz, B., Tangermann, M., Vidaurre, C. et al., The Berlin brain–computer interface: Non-medical uses of BCI technology. Front. Neurosci. 4(10):2452–2462, 2010.

    Google Scholar 

  12. Pfurtscheller, G., Brunner, C., Schlögl, A., and Da Silva, F. L., Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage 31(1):153, 2006.

    Article  CAS  Google Scholar 

  13. Doud, A. J., Lucas, J. P., Pisansky, M. T., and He, B., Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PloS One 6(10):e26322, 2011.

    Article  CAS  Google Scholar 

  14. LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., and He, B., Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10(4):046003, 2013.

    Article  Google Scholar 

  15. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B., A review of classification algorithms for EEG based brain-computer interfaces. J. Neural Eng. 4(2):R1, 2007.

    Article  CAS  Google Scholar 

  16. Lan, T., Erdogmus, D., Adami, A., Pavel, M., Mathan, S., In Engineering in medicine and biology society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the (IEEE, 2006), pp. 7064–7067.

  17. Lal, T. N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., and Scholkopf, B., Support vector channel selection in bci. IEEE Trans. Biomed. Eng. 51(6):1003, 2004.

    Article  Google Scholar 

  18. Farquhar, J., Hill, J., Lal, T. N., Schölkopf, B., Regularised csp for sensor selection in bci, 2006.

  19. Wang, Y., Gao, S., Gao, X., In Engineering in medicine and biology society, 2005. IEEE- EMBS 2005. 27th Annual International Conference of the (IEEE, 2006), pp. 5392–5395.

  20. Arvaneh, M., Guan, C., Ang, K. K., and Quek, C., Optimizing the channel selection and classification accuracy in eeg-based bci. IEEE Trans. Biomed. Eng. 58(6):1865, 2011.

    Article  Google Scholar 

  21. Arvaneh, M., Guan, C., Ang, K. K., Quek, C., In Neural networks (IJCNN), The 2012 International Joint Conference on (IEEE, 2012), pp. 1–6.

  22. Lv, J., Liu, M., In Innovative computing information and control, 2008. ICICIC'08. 3rd International Conference on (IEEE, 2008), pp. 457–457.

  23. Ghaemi, A., Rashedi, E., Pourrahimi, A. M., Kamandar, M., and Rahdari, F., Automatic channel selection in eeg signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm. Biomed. Signal Process. Control 33:109, 2017.

    Article  Google Scholar 

  24. Lee, C., Jung, J., Kwon, G., Kim, L., In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE (IEEE, 2012), pp. 5290–5293.

  25. Wang, Y., Wang, Y. T., and Jung, T. P., Translation of eeg spatial filters from resting to motor imagery using independent component analysis. PloS One 7(5):e37665, 2012.

    Article  CAS  Google Scholar 

  26. Brunner, C., Naeem, M., Leeb, R., Graimann, B., and Pfurtscheller, G., Spatial filtering and selection of optimized components in four class motor imagery eeg data using independent components analysis. Pattern Recogn. Lett. 28(8):957, 2007.

    Article  Google Scholar 

  27. Hung, C. I., Lee, P. L., Wu, Y. T., Chen, L. F., Yeh, T. C., and Hsieh, J. C., Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers. Ann. Biomed. Eng. 33(8):1053, 2005.

    Article  Google Scholar 

  28. Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M., and Oja, E., Independent component approach to the analysis of eeg and meg recordings. IEEE Trans. Biomed. Eng. 47(5):589, 2000.

    Article  Google Scholar 

  29. Hyvärinen, A., Independent component analysis of images, Encyclopedia of Computational Neuroscience pp. 1–5, 2013.

  30. Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., and Smith, S. M., Automatic denoising of functional mri data: Combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449, 2014.

    Article  Google Scholar 

  31. Delorme, A., Palmer, J., Onton, J., Oostenveld, R., and Makeig, S., Independent eeg sources are dipolar. PloS One 7(2):e30135, 2012.

    Article  CAS  Google Scholar 

  32. Zhou, B., Wu, X., Lv, Z., Zhang, L., and Guo, X., A fully automated trial selection method for optimization of motor imagery based brain-computer interface. PloS One 11(9):e0162657, 2016.

    Article  Google Scholar 

  33. Zhou, B., Wu, X., Zhang, L., Guo, X., Lv, Z., In Proc 8th ICBBE Conf (2014), pp. 173–179.

  34. Wu, X., Zhou, B., Zhang, L., Guo, X., and Lv, Z., Ica filter design in brain-computer interface of motor imagery. Acta Biophys. Sin. 30(7):540, 2014.

    CAS  Google Scholar 

  35. Lin, C.T., Wang, Y.K., Chen, S.A., A hierarchal classifier for identifying independent components, IEEE pp. 1–5, 2012.

  36. Pfurtscheller, G., and Da Silva, F. L., Event-related eeg/meg synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 110(11):1842, 1999.

    Article  CAS  Google Scholar 

  37. Pfurtscheller, G., Graphical display and statistical evaluation of event-related desynchronization (erd). Electroencephalogr. Clin. Neurophysiol. 43(5):757, 1977.

    Article  CAS  Google Scholar 

  38. Liu, K. H., Dragoset, W. H., Blind-source separation of seismic signals based on information maximization. Geophysics, 2013.

  39. Amari, S. I., Natural gradient learning for over-and under-complete bases in Ica. Neural Comput. 11(8):1875, 1999.

    Article  CAS  Google Scholar 

  40. Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., and Grosse-Wentrup, M., Transfer learning in brain-computer interfaces. IEEE Comput. Intell. Mag. 11(1):20, 2016.

    Article  Google Scholar 

  41. Meisheri, H., Ramrao, N., Mitra, S.K., In Computational and Business Intelligence (IS-CBI), 2016 4th International Symposium on (IEEE, 2016), pp. 90–93.

  42. Yuan, H., Perdoni, C., Yang, L., and He, B., Differential electrophysiological coupling for positive and negative bold responses during unilateral hand movements. J. Neurosci. 31(26):9585, 2011.

    Article  CAS  Google Scholar 

  43. Yuan, H., Liu, T., Szarkowski, R., Rios, C., Ashe, J., and He, B., Negative covariation between task-related responses in alpha/beta-band activity and bold in human sensorimotor cortex: An eeg and fmri study of motor imagery and movements. Neuroimage 49(3):2596, 2010.

    Article  Google Scholar 

  44. Shan, H., Xu, H., Zhu, S., and He, B., A novel channel selection method for optimal classification in different motor imagery bci paradigms. Biomed. Eng. Online 14(1):93, 2015.

    Article  Google Scholar 

  45. Tam, W. K., Tong, K. Y., Meng, F., and Gao, S., A minimal set of electrodes for motor imagery bci to control an assistive device in chronic stroke subjects: A multi-session study. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6):617, 2011.

    Article  Google Scholar 

  46. Sannelli, C., Dickhaus, T., Halder, S., Hammer, E. M., Müller, K. R., and Blankertz, B., On optimal channel configurations for smr-based brain–computer interfaces. Brain Topogr. 23(2):186, 2010.

    Article  Google Scholar 

  47. Shenoy, P., Krauledat, M., Blankertz, B., Rao, R. P., and Müller, K. R., Towards adaptive classification for bci. J. Neural Eng. 3(1):R13, 2006.

    Article  Google Scholar 

  48. Schölkopf, B., Platt, J., Hofmann, T., In Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December (2007), pp. 753–760.

  49. Arvaneh, M., Robertson, I., Ward, T. E., In Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE (IEEE, 2014), pp. 6501–6504.

  50. Saha, S., Ahmed, K., Mostafa, R., Hadjileontiadis, L., Khandoker, A., Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain computer interface, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017.

Download references

Funding

This project was funded by National Natural Science Foundation of China under the grant 61271352, Natural Science Research Project of Anhui Province (KJ2016A043), Anhui University Center of Information Support & Assurance Technology Open Foundation (ADXXBZ201505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopei Wu.

Ethics declarations

Conflict of Interest

Author Jing Ruan declares that she has no conflict of interest. Author Xiaopei Wu declares that he has no conflict of interest. Author Bangyan Zhou declares that she has no conflict of interest. Author Xiaojing Guo declares that she has no conflict of interest. Author Zhao Lv declares that he has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, J., Wu, X., Zhou, B. et al. An Automatic Channel Selection Approach for ICA-Based Motor Imagery Brain Computer Interface. J Med Syst 42, 253 (2018). https://doi.org/10.1007/s10916-018-1106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1106-3

Keywords