Skip to main content

Advertisement

Log in

Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Proces. Syst., 2012. https://doi.org/10.1016/j.protcy.2014.09.007.

    Article  Google Scholar 

  2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015.

  3. Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

  4. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:2278–2323, 1998. https://doi.org/10.1109/5.726791.

    Article  Google Scholar 

  5. Bashivan, P., Rish, I., Yeasin, M., and Codella, N., Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448, 2015.

  6. Talo, M., Baloglu, U. B., Yildirim, O., and Acharya, U. R., Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res., 2018. https://doi.org/10.1016/j.cogsys.2018.12.007.

    Article  Google Scholar 

  7. Bhat, S., Acharya, U. R., Hagiwara, Y., Dadmehr, N., and Adeli, H., Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput. Biol. Med., 2018. https://doi.org/10.1016/j.compbiomed.2018.09.008.

    Article  PubMed  Google Scholar 

  8. Acharya, U. R., Vinitha Sree, S., Swapna, G., Martis, R. J., and Suri, J. S., Automated EEG analysis of epilepsy: A review. Knowledge-Based Syst 45:147–165, 2013. https://doi.org/10.1016/j.knosys.2013.02.014.

    Article  Google Scholar 

  9. Janga Vijaykumar, P., and Sreenivasareddy, E., A review on Machine Learning Techniques for Neurological disorders estimation by Analyzing EEG Waves. Int J Trend Sci Res Dev., 2018.

  10. Acharya, U. R., Hagiwara, Y., Deshpande, S. N., Suren, S., Koh, J. E. W., Oh, S. L., Arunkumar, N., Ciaccio, E. J., and Lim, C. M., Characterization of focal EEG signals: A review. Futur. Gener. Comput. Syst., 2019. https://doi.org/10.1016/j.future.2018.08.044.

    Article  Google Scholar 

  11. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., and Wunsch, D., Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing., 2000. https://doi.org/10.1016/S0925-2312(99)00126-5.

    Article  Google Scholar 

  12. Mirowski, P., Madhavan, D., LeCun, Y., and Kuzniecky, R., Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol., 2009. https://doi.org/10.1016/j.clinph.2009.09.002.

    Article  PubMed  Google Scholar 

  13. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H., Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100:270–278, 2018.

    Article  PubMed  Google Scholar 

  14. Wulsin, D. F., Gupta, J. R., Mani, R., Blanco, J. A., and Litt, B., Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement. J. Neural Eng., 2011. https://doi.org/10.1088/1741-2560/8/3/036015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stober, S., Sternin, A., Owen, A. M., and Grahn, J. A., Deep feature learning for EEG recordings. arXiv preprint arXiv:1511.04306, 2015.

  16. Yıldırım, Ö., Baloglu, U. B., and Acharya, U. R., A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. & Applic.:1–12, 2018.

  17. Ding, S., Zhang, N., Xu, X., Guo, L., and Zhang, J., Deep Extreme Learning Machine and Its Application in EEG Classification. Math. Probl. Eng., 2015. https://doi.org/10.1155/2015/129021.

    CAS  Google Scholar 

  18. Jirayucharoensak, S., Pan-Ngum, S., and Israsena, P., EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation. Sci. World J., 2014. https://doi.org/10.1155/2014/627892.

    Article  Google Scholar 

  19. Supratak, A., Dong, H., Wu, C., and Guo, Y., DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabil Eng., 2017. https://doi.org/10.1109/TNSRE.2017.2721116.

    Article  PubMed  Google Scholar 

  20. Oh, S. L., Ng, E. Y. K., Tan, R. S., and Acharya, U. R., Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med., 2018. https://doi.org/10.1016/j.compbiomed.2018.06.002.

    Article  PubMed  Google Scholar 

  21. Yildirim, Ö., A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med., 2018. https://doi.org/10.1016/j.compbiomed.2018.03.016.

    Article  PubMed  Google Scholar 

  22. Yıldırım, Ö., Pławiak, P., Tan, R. S., and Acharya, U. R., Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med., 2018. https://doi.org/10.1016/j.compbiomed.2018.09.009.

    Article  PubMed  Google Scholar 

  23. Sharma, M., Achuth, P. V., Deb, D., Puthankattil, S. D., and Acharya, U. R., An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn. Syst. Res., 2018. https://doi.org/10.1016/j.cogsys.2018.07.010.

    Article  Google Scholar 

  24. Bairy, G. M., Lih, O. S., Hagiwara, Y., Puthankattil, S. D., Faust, O., Niranjan, U. C., and Acharya, U. R., Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features. J Med Imaging Health Inform 7(8):1857–1862, 2017.

    Article  Google Scholar 

  25. Mumtaz, W. et al., Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed Signal Process Control 31:108–115, 2017.

    Article  Google Scholar 

  26. Liao, S. C., Te, W. C., Huang, H. C., Cheng, W. T., and Liu, Y. H., Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns. Sensors (Switzerland), 2017. https://doi.org/10.3390/s17061385.

    Article  Google Scholar 

  27. Bachmann, M. et al., Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Prog. Biomed. 155:11–17, 2018.

    Article  Google Scholar 

  28. Puthankattil, S. D., and Joseph, P. K., Classification of eeg signals in normal and depression conditions by ann using rwe and signal entropy. J Mech Med Biol., 2012. https://doi.org/10.1039/c6ra90093c.

    Article  CAS  Google Scholar 

  29. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., and Subha, D. P., Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Prog. Biomed., 2018. https://doi.org/10.1016/j.cmpb.2018.04.012.

    Article  PubMed  Google Scholar 

  30. Bengio, Y., Simard, P., and Frasconi, P., Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Trans. Neural Netw., 1994. https://doi.org/10.1109/72.279181.

    Article  CAS  PubMed  Google Scholar 

  31. Hochreiter, S., and Schmidhuber, J. J., Long short-term memory. Neural Comput. 9:1–32, 1997. https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  CAS  PubMed  Google Scholar 

  32. Oh, S. L., Ng, E. Y., Tan, R. S., and Acharya, U. R., Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Comput. Biol. Med., 2018. https://doi.org/10.1016/j.compbiomed.2018.12.012.

    Article  PubMed  Google Scholar 

  33. Martinez-Murcia, F. J., Górriz, J. M., Ramírez, J., and Ortiz, A., Convolutional Neural Networks for Neuroimaging in Parkinson’s Disease: Is Preprocessing Needed? Int. J. Neural Syst., 2018. https://doi.org/10.1142/S0129065718500351.

    Article  PubMed  Google Scholar 

  34. Pławiak, P., and Acharya, U. R., Novel Deep Genetic Ensemble of Classifiers for Arrhythmia Detection Using ECG Signals. Neural Comput. & Applic., 2018. https://doi.org/10.1007/s00521-018-03980-2.

  35. Yildirim, O., Tan, R. S., and Acharya, U. R., An efficient compression of ECG signals using deep convolutional autoencoders. Cogn. Syst. Res., 2018. https://doi.org/10.1016/j.cogsys.2018.07.004.

    Article  Google Scholar 

  36. Antoniades, A., Spyrou, L., Martin-Lopez, D., Valentin, A., Alarcon, G., Sanei, S., and Took, C. C., Deep Neural Architectures for Mapping Scalp to Intracranial EEG. Int. J. Neural Syst., 2018. https://doi.org/10.1142/S0129065718500090.

    Article  PubMed  Google Scholar 

  37. Książek, W., Abdar, M., Acharya, U. R., and Pławiak, P., A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst. Res., 2018. https://doi.org/10.1016/j.cogsys.2018.12.001.

    Article  Google Scholar 

  38. Yuan, Q., Zhou, W., Xu, F., Leng, Y., and Wei, D., Epileptic EEG Identification via LBP Operators on Wavelet Coefficients. Int. J. Neural Syst., 2018. https://doi.org/10.1142/S0129065718500107.

    Article  PubMed  Google Scholar 

  39. Pławiak, P., Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm Evol Comput., 2018. https://doi.org/10.1016/j.swevo.2017.10.002.

    Article  Google Scholar 

  40. Li, Y., Cui, W., Luo, M., Li, K., and Wang, L., Epileptic seizure detection based on time-frequency images of EEG signals using Gaussian mixture model and gray level co-occurrence matrix features. Int. J. Neural Syst.:1850003, 2018.

    Article  PubMed  Google Scholar 

  41. Yuan, S., Zhou, W., and Chen, L., Epileptic Seizure Prediction Using Diffusion Distance and Bayesian Linear Discriminate Analysis on Intracranial EEG. Int. J. Neural Syst. 28(01):1750043, 2018.

    Article  PubMed  Google Scholar 

  42. Abdar, M., Zomorodi-Moghadam, M., Zhou, X., Gururajan, R., Tao, X., Barua, P. D., and Gururajan, R., A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn. Lett., 2018. https://doi.org/10.1016/j.patrec.2018.11.004.

  43. Abdar, M., Using Decision Trees in Data Mining for Predicting Factors Influencing of Heart Disease. Carpathian Journal of Electronic & Computer Engineering 8(2), 2015.

  44. Ahmadlou, M., Adeli, H., and Adeli, A., Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol., 2012. https://doi.org/10.1016/j.ijpsycho.2012.05.001.

    Article  PubMed  Google Scholar 

  45. Faust, O., Aang, P. C. A., Puthankattil, S. D., and Joseph, P. K., Depression diagnosis support system based on eeg signal entropies. J Mech Med Biol., 2014. https://doi.org/10.1142/S0219519414500353.

    Article  Google Scholar 

  46. Acharya, U. R., Sudarshan, V. K., Adeli, H., Santhosh, J., Koh, J. E. W., Puthankatti, S. D., and Adeli, A., A novel depression diagnosis index using nonlinear features in EEG signals. Eur. Neurol. 74:79–83, 2015. https://doi.org/10.1159/000438457.

    Article  PubMed  Google Scholar 

  47. Hecht, D., Depression and the hyperactive right-hemisphere. Neurosci. Res. 68(2):77–87, 2010.

    Article  PubMed  Google Scholar 

  48. Yildirim, O., Baloglu, U. B., and Acharya, U. R., A deep learning model for automated sleep stages classification using psg signals. Int. J. Environ. Res. Public Health 16(4):599, 2019.

    Article  PubMed Central  Google Scholar 

  49. Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., and Acharya, U. R., Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Prog. Biomed. 161:1–13, 2018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozal Yildirim.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest in this work.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. We have obtained the ethical approval for depression data from Medical College Calicut, Kerala, India.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, B., Yildirim, O., Talo, M. et al. Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals. J Med Syst 43, 205 (2019). https://doi.org/10.1007/s10916-019-1345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1345-y

Keywords

Navigation