Skip to main content

Advertisement

Log in

Diagnosis of Thyroid Nodules Based on Local Non-quantitative Multi-Directional Texture Descriptor with Rotation Invariant Characteristics for Ultrasound Image

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The traditional texture feature lacks the directional analysis of graphical element, so it could not better distinguish the thyroid nodule texture image formed by the rotation of graphical element. A non-quantifiable local feature is adopted in this paper to design a robust texture descriptor so as to enhance the robustness of the texture classification in the rotation and scale changes, which can improve the diagnostic accuracy of thyroid nodules in ultrasound images. First of all, the concept of local feature with rotational symmetry is introduced. It is found that many rotation invariant local features are rotational symmetric to a certain degree. Therefore, we propose a novel local feature to describe the rotation invariant properties of the texture. In order to deal with the change of rotation and scale of ultrasound thyroid nodules in image, Pairwise rotation-invariant spatial context feature is adopted to analyze the texture feature, which can combine with the scale information without increasing the dimension of the local feature. The fadopted local features have strong robustness to rotation and gray intensity variation. The experimental results show that our proposed method outperforms the existing algorithms on thyroid ultrasound data sets, which greatly improve the Diagnosis accuracy of thyroid nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ojala, T., Pietikäinen, M., and Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7):971–987, 2002.

    Article  Google Scholar 

  2. Ardakani, A. A., Gharbali, A., and Mohammadi, A., Classification of benign and malignant thyroid nodules using wavelet texture analysis of sonograms[J]. J. Ultrasound Med. 34(11):1983–1989, 2015.

    Article  Google Scholar 

  3. Cross, G. R., and Jain, A. K., Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5(1):25–39, 1983.

    Article  Google Scholar 

  4. Jang, M., Kim, S. M., Lyou, C. Y. et al., Differentiating benign from malignant thyroid nodules[J]. J. Ultrasound Med. 31(2):197–204, 2012.

    Article  Google Scholar 

  5. Haralick, R. M., Shanmugam, K., and Dinstein, I. H., Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6):610–621, 1973.

    Article  Google Scholar 

  6. Calonder, M., Lepetit, V., Strecha, C., and Fua, P., Brief: Binary robust independent elementary features. Proc. Eur. Conf. Computer Vision (ECCV). 778–792, 2010.

    Chapter  Google Scholar 

  7. Mehta, R., Egiazarian, K., Texture classification using dense micro-block difference (DMD). Proc. Asian Conf. Comput. Vis. 1643–1658, 2014.

  8. Perronnin, F., Sánchez, J., and Mensink, T., Improving the fisher kernel for large-scale image classification. Proc. Eur. Conf. Comput. Vis. 143–156, 2010.

  9. Qian, P., Zhao, K., Jiang, Y., Kuan-Hao, S., Deng, Z., Wang, S., and Jr, R. F. M., Knowledge-leveraged transfer fuzzy c-means for texture image segmentation with self-adaptive cluster prototype matching. Knowledge-Based Syst. 130:33–50, 2017.

    Article  Google Scholar 

  10. Weyl, H., Symmetry. Vol. 11. Princeton, NJ, USA: Princeton Univ. Press, 1952.

    Book  Google Scholar 

  11. Xu, Y., Yang, X., Ling, H., and Ji, H., A new texture descriptor using Mul-tifractal analysis in multi-orientation wavelet pyramid. Proc. IEEE Conf. Comput. Vis. Pattern Recog. 161–168, 2010.

  12. Varma, M., and Zisserman, A., A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2):61–81, 2005.

    Article  Google Scholar 

  13. Crosier, M., and Griffin, L. D., Using basic image features for texture classification. Int. J. Comput. Vis. 88(3):447–460, 2010.

    Article  Google Scholar 

  14. Wu, J., and Rehg, J. M., Centrist: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8):1489–1501, 2011.

    Article  Google Scholar 

  15. Nixon, I. J., Ganly, I., Hann, L. E. et al., Nomogram for predicting malignancy in thyroid nodules using clinical, biochemical, ultrasonographic, and cytologic features[J]. Surgery 148(6):1120–1128, 2010.

    Article  Google Scholar 

  16. Ivanac, G., Brkljacic, B., Ivanac, K. et al., Vascularisation of benign and malignant thyroid nodules: CD US evaluation.[J]. Ultraschall in Der Medizin 28(05):502–506, 2007.

    Article  CAS  Google Scholar 

  17. Bo, Z., Yu-Xin, J., and Qing, D., et al., Prospective observation of contrast-enhanced patterns of thyroid nodules with SonoVue[J]. Chinese Journal of Medical Imaging Technology, 2010.

  18. Nixon, I. J., Ian, G., Hann, L. E. et al., Nomogram for selecting thyroid nodules for ultrasound-guided fine-needle aspiration biopsy based on a quantification of risk of malignancy[J]. Head Neck 35(7):1022–1025, 2013.

    Article  Google Scholar 

  19. Heng, Z, and Zheng, S., Research Progress of texture analysis in thyroid nodule imaging[J]. Chinese computed Medical Imaging, 2018.

  20. Xia, Kai-Jian; Yin, Hong-Sheng; Rong, Gong-Sheng; Wang, Jiang-Qiang; Jin, Yong. X-ray image enhancement base on the improved adaptive low-pass filtering. J. Med. Imaging Health Inform., Volume 8, Number 7, September 2018, pp. 1342–1348(7), doi:https://doi.org/10.1166/jmihi.2018.2472

    Article  Google Scholar 

  21. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A., Describing textures in the wild. Proc. IEEE Conf. Comput. Vis. Pattern Recog. 3606–3613, 2014.

  22. Varma, M., and Zisserman, A., A statistical approach to material classifi-cation using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11):2032–2047, 2009.

    Article  Google Scholar 

  23. Qian, P., Xi, C., Min, X., Jiang, Y., Kuan-Hao, S., Wang, S., and Jr, R. F. M., SSC-EKE: Semi-supervised classification with extensive knowledge exploitation. Inform. Sci. 422:51–76, 2018.

    Article  Google Scholar 

  24. Ojal, L. X., Li, Z. et al., Real-time ultrasound Elastography in the differential diagnosis of benign and malignant thyroid nodules[J]. J. Ultrasound Med. 28(7):861–867, 2009.

    Article  Google Scholar 

  25. Xia, K.-j., Yin, H.-s., and Zhang, Y.-d., Deep semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. J. Med. Syst. 43:2, 2019. https://doi.org/10.1007/s10916-018-1116-1.

    Article  Google Scholar 

  26. Moon, W. J., Jung, S. L., Lee, J. H. et al., Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study.[J]. Radiology 247(3):762, 2008.

    Article  Google Scholar 

  27. Urbach, E. R., Roerdink, J. B., and Wilkinson, M. H., Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2):272–285, 2007.

    Article  Google Scholar 

  28. Chen, J. et al., WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9):1705–1720, 2010.

    Article  Google Scholar 

  29. Sharma, G., ul Hussain, S., and Jurie, F., Local higher-order statistics (LHS) for texture categorization and facial analysis. Proc. Eur. Conf. Comput. Vis. 1–12, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Bi.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest. The paper does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, L., Shuang, Z. Diagnosis of Thyroid Nodules Based on Local Non-quantitative Multi-Directional Texture Descriptor with Rotation Invariant Characteristics for Ultrasound Image. J Med Syst 43, 231 (2019). https://doi.org/10.1007/s10916-019-1373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1373-7

Keywords

Navigation