Skip to main content

Advertisement

Log in

A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F − measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acharya, U. Rajendra., Ng, E. Y. K., and Suri, J. S., Image Modeling of the Human Eye, Artech House bioinformatics & biomedical imaging series, Artech House, 2008.

  2. Goldmann, H., and Schmidt, T., Applanation tonometry. Ophthalmologica 134:221–242, 1957.

    Article  CAS  PubMed  Google Scholar 

  3. Hagiwara, Y., Koh, J. E. W., Tan, J. H., Bhandary, S. V., Laude, A., Ciaccio, E. J., Tong, L., and Acharya, U. R., Computer-aided diagnosis of glaucoma using fundus images: A review. Comput. Methods Prog. Biomed. 165:1–12, 2018.

    Article  Google Scholar 

  4. Sommer, A., Tielsch, J. M., Katz, J., Quigley, H. A., Gottsch, J. D., Javitt, J., and Singh, K., Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch. Ophthalmol. 109(8):1090–1095, 1991.

    Article  CAS  PubMed  Google Scholar 

  5. Quigley, H. A., and Broman, A. T., The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3):262–267, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harizman, N., Oliveira, C., Chiang, A., Tello, C., Marmor, M., Ritch, R., and Liebmann, J. M., The ISNT rule and differentiation of normal from glaucomatous eyes. Arch. Ophthalmol. 124(11):1579–1583, 2006.

    Article  PubMed  Google Scholar 

  7. Burgoyne, C. F., Pearls of glaucoma management. Berlin, Heidelberg, (Chapter 1. p. 1): Springer, 2010.

    Google Scholar 

  8. Eye Diseases Prevalence Research Group, Prevalence of open-angle glaucoma among adults in the United States. Arch. Ophthalmol. 122:532–538, 2004.

    Article  Google Scholar 

  9. Mookiah, M. R. K., Acharya, U. R., Lim, C. M., Petznick, A., and Suri, J. S., Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl.-Based Syst. 33:73–82, 2012.

    Article  Google Scholar 

  10. Maheshwari, S., Pachori, R. B., and Acharya, U. R., Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE journal of biomedical and health informatics 21(3):803–813, 2016.

    Article  PubMed  Google Scholar 

  11. Gayathri, R., Rao, P. V., and Aruna, S., Automated glaucoma detection system based on wavelet energy features and ANN. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on, pp. 2808–2812. IEEE, 2014.

  12. Gajbhiye, Gaurav O., and Kamthane, Ashok N., Automatic classification of glaucomatous images using wavelet and moment feature. In India Conference (INDICON), 2015 Annual IEEE, pp. 1–5. IEEE, 2015.

  13. Annu, N., and Justin, J., Automated classification of glaucoma images by wavelet energy features. International Journal of Engineering and Technology 5(2):1716–1721, 2013.

    Google Scholar 

  14. Acharya, U. R., Ng, E. Y. K., Eugene, L. W. J., Noronha, K. P., Min, L. C., Nayak, K. P., and Bhandary, S. V., Decision support system for the glaucoma using Gabor transformation. Biomedical Signal Processing and Control 15:18–26, 2015.

    Article  Google Scholar 

  15. Noronha, K. P., Acharya, U. R., Prabhakar Nayak, K., Martis, R. J., and Bhandary, S. V., Automated classification of glaucoma stages using higher order cumulant features. Biomedical Signal Processing and Control 10:174–183, 2014.

    Article  Google Scholar 

  16. Krishnan, M. M. R., and Faust, O., Automated glaucoma detection using hybrid feature extraction in retinal fundus images. Journal of Mechanics in Medicine and Biology 13(01):1350011, 2013.

    Article  Google Scholar 

  17. Nikias, C. L., and Petropulu, A. P., Higher-order spectra analysis: A nonlinear signal processing framework. Englewood Cliffs, NJ: PTR Prentice Hall, 1993.

    Google Scholar 

  18. Nayak, J., Acharya, R., Subbanna Bhat, P., Shetty, N., and Lim, T.-C., Automated diagnosis of glaucoma using digital fundus images. J. Med. Syst. 33(5):337, 2009.

    Article  PubMed  Google Scholar 

  19. Gayathri, R., and Rao, P. V., Glaucoma detection using cup to disc ratio and artificial neural networks. International Journal of Engineering & Technology 7:135–140, 2018.

    Google Scholar 

  20. Matsopoulos, G. K., Asvestas, P. A., Delibasis, K. K., Mouravliansky, N. A., and Zeyen, T. G., Detection of glaucomatous change based on vessel shape analysis. Comput. Med. Imaging Graph. 32(3):183–192, 2008.

    Article  PubMed  Google Scholar 

  21. Simonthomas, S., Thulasi, N., and Asharaf, P., Automated diagnosis of glaucoma using Haralick texture features. In Information Communication and Embedded Systems (ICICES), 2014 International Conference on, pp. 1–6. IEEE, 2014.

  22. Fink, F., Worle, K., Gruber, P., Tome, A. M., Gorriz-Saez, J. M., Puntonet, C. G., and Lang, E. W., ICA analysis of retina images for glaucoma classification. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 4664–4667. IEEE, 2008.

  23. Acharya, U. R., Bat, S., Koh, J. E. W., Bhandary, S. V., and Adeli, H., A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput. Biol. Med. 88:72–83, 2017.

    Article  PubMed  Google Scholar 

  24. Chen, Xiangyu, Xu, Yanwu, Wong, Damon Wing Kee, Wong, Tien Yin, and Liu, Jiang, Glaucoma Detection based on Deep Convolutional Neural Network, 37th Annual International IEEE conference on Engineering in Medicine and Biology Society (EMBC), 715–718, 2015.

  25. Raghavendra, U., Bhandary, S. V., Gudigar, A., and Acharya, U. R., Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images. Biocybernetics and Biomedical Engineering 38(1):170–180, 2017.

    Article  Google Scholar 

  26. Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., and Acharya, U. R., Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 441:41–49, 2018.

    Article  Google Scholar 

  27. Xu, Y., Xu, D., Lin, S., Liu, J., Cheng, J., Cheung, C., Aung, T., and Wong, T., Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011:1–8, 2011.

    Google Scholar 

  28. Dua, S., Acharya, U. R., Chowriappa, P., and Vinitha Sree, S., Wavelet-based energy features for glaucomatous image classification. IEEE Trans. Inf. Technol. Biomed. 16(1):80–87, 2012.

    Article  PubMed  Google Scholar 

  29. Acharya, U. R., Dua, S., Du, X., Sree, S. V., and Chua, C. K., Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed 15(3):449–455, 2011.

    Article  PubMed  Google Scholar 

  30. Chrástek, R., Wolf, M., Donath, K., Niemann, H., Paulus, D., Hothorn, T., Lausen, B., Lämmer, R., Mardin, C. Y., and Michelson, G., Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med. Image Anal. 9(4):297–314, 2005.

    Article  PubMed  Google Scholar 

  31. Yin, Fengshou, Liu, Jiang, Wong, Damon Wing Kee, Tan, Ngan Meng, Cheung, Carol, Baskaran, Mani, Aung, Tin, and Wong, Tien Yin., Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In Computer-based medical systems (CBMS), 2012 25th international symposium on, pp. 1–6. IEEE, 2012.

  32. Maheshwari, S., Pachori, R. B., Kanhangad, V., Bhandary, S. V., and Acharya, U. R., Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Comput. Biol. Med. 88:142–149, 2017.

    Article  PubMed  Google Scholar 

  33. Maheshwari, S., Kanhangad, V., Pachori, R. B., Bhandary, S. V., and Acharya, U. R., Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput. Biol. Med., 2018 (In Press).

  34. Olshausen, B. A., and Field, D. J., Sparse coding with an over complete basis set: A strategy employed by V1. Vis. Res. 37:3311–3325, 1997.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, C., Cheng, X., Liu, J., He, J., and Liu, G., Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status. Journal of Control Science and Engineering 2018, Article ID 8676387:9. https://doi.org/10.1155/2018/8676387.

    Google Scholar 

  36. Yang, J., Bai, Y., Li, G., Liu, M., and Liu, X., A novel method of diagnosing premature ventricular contraction based on sparse autoencoder and softmax regression. Biomed. Mater. Eng. 26:S1549–S1558, 2015.

    PubMed  Google Scholar 

  37. Chen, L., Zhou, M., Su, W., Wu, M., She, J., and Hirota, K., Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction. Inf. Sci. 428:49–61, 2018.

    Article  Google Scholar 

  38. Shin, H.-C., Orton, M. R., Collins, D. J., Doran, S. J., and Leach, M. O., Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8):1930–1943, 2013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Gudigar.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, U., Gudigar, A., Bhandary, S.V. et al. A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images. J Med Syst 43, 299 (2019). https://doi.org/10.1007/s10916-019-1427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1427-x

Keywords

Navigation