Skip to main content

Advertisement

Log in

Automated Detection of Alzheimer’s Disease Using Brain MRI Images– A Study with Various Feature Extraction Techniques

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization (2018) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  2. Head, E., Powell, D., Gold, B. T., and Schmitt, F. A., Alzheimer's disease in down syndrome. European Journal of Neurodegenerative Diseases 1(3):353–364, 2012.

    Google Scholar 

  3. Wang, T., Qiu, R. G., and Yu, M., Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks. Sci. Rep. 8:9161, 2018. https://doi.org/10.1038/s41598-018-27337-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haaksma, M. L. et al., Comorbidity and progression of late onset Alzheimer’s disease: A systematic review. PLoS One 12(5):e0177044. https://doi.org/10.1371/journal.pone.0177044.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malik, G. A., and Robertson, N. P., Treatments in Alzheimer’s disease. J. Neurol. 264(2):416–418, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Editorial, The three stages of Alzheimer's disease. Lancet 377(9776):1465, 2011. https://doi.org/10.1016/S0140-6736(11)60582-5.

    Article  Google Scholar 

  7. Neugroschl, J., and Wang, S., Alzheimer’s disease: Diagnosis and treatment across the spectrum of disease severity. Mt Sinai J. Med. 78(4):596–612, 2011. https://doi.org/10.1002/msj.20279.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pich, M. et al., Imaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology? Alzheimers Res. Ther. 6:51, 2014. https://doi.org/10.1186/alzrt276.

    Article  CAS  Google Scholar 

  9. Braskie, M. N., Toga, A. W., and Thompson, P. M., Recent advances in imaging alzheimer’s disease. J. Alzheimers Dis. 33(1):S313–S327, 2013. https://doi.org/10.3233/JAD-2012-129016.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ossenkoppele, R. et al., Prevalence of Amyloid PET Positivity in Dementia Syndromes A Meta-analysis. J. Am. Med. Assoc. 313(19):1939–1949, 2015. https://doi.org/10.1001/jama.2015.4669.

    Article  Google Scholar 

  11. Norfray, J. F., and Provenzale, J. M., Alzheimer’s disease: neuropathologic findings and recent advances in imaging. Am. J. Roentgenol. 182(1):3–13, 2004. https://doi.org/10.2214/ajr.182.1.1820003.

    Article  Google Scholar 

  12. Whalley, L. J., Spatial distribution and secular trends in the epidemiology of Alzheimer’s disease. Neuroimaging Clin. N. Am. 22(1):1–10, 2012. https://doi.org/10.1016/j.nic.2011.11.002.

    Article  PubMed  Google Scholar 

  13. Stonnington, C. M. et al., Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. NeuroImage 5(4):1405–1413, 2010. https://doi.org/10.1016/j.neuroimage.2010.03.051.

    Article  Google Scholar 

  14. Liu, X. et al., Locally linear embedding (LLE) for MRI based Alzheimer's disease classification. NeuroImage 83:148–157, 2013. https://doi.org/10.1016/j.neuroimage.2013.06.033.

    Article  PubMed  Google Scholar 

  15. Dimitriadis, S. I., Liparas, D., and Tsolaki, M. N., Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and Alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database. J. Neurosci. Methods 302:14–23, 2018. https://doi.org/10.1016/j.jneumeth.2017.12.010.

    Article  CAS  PubMed  Google Scholar 

  16. Beheshti, I., Demirel, H., and Matsuda, H., Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput. Biol. Med. 83:109–119, 2017. https://doi.org/10.1016/j.compbiomed.2017.02.011.

    Article  PubMed  Google Scholar 

  17. Westman, E., Muehlboeck, J.-S., and Simmons, A., Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion. NeuroImage 62:229–238, 2012. https://doi.org/10.1016/j.neuroimage.2012.04.056.

    Article  PubMed  Google Scholar 

  18. Sotensen, L., and Nielsen, M., Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. J. Neurosci. Methods 302:66–74, 2018. https://doi.org/10.1016/j.jneumeth.2018.01.003.

    Article  Google Scholar 

  19. Casanova, R. et al., Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease across imaging databases. NeuroImage 183:401–411, 2018. https://doi.org/10.1016/j.neuroimage.2018.08.040.

    Article  PubMed  Google Scholar 

  20. Calsolaro, V., and Edison, P., Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimer's and Dementia 12(6):719–732, 2016.

    Article  PubMed  Google Scholar 

  21. N. A. Mathew, R. Vivek, and P. Anurenjan, Early Diagnosis of Alzheimer's Disease from MRI Images Using PNN, in 2018 International CET Conference on Control, Communication, and Computing (IC4), pp. 161–164, 2018.

  22. Varatharajan, R., Manogaran, G., Priyan, M., and Sundarasekar, R., Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 21(1):681–690, 2017.

    Article  Google Scholar 

  23. Dickerson, B., Stoub, T., Shah, R., Sperling, R., Killiany, R., Albert, M. et al., Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76:1395–1402, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. Patil, M. Mathura, S. Madhumitha, S. S. David, M. Fernandes, A. Venugopal, et al., Using Image Processing on MRI Scans, in Signal Processing, Informatics, IEEE International Conference on Communication and Energy Systems (SPICES), pp. 1–5, 2015, 2015. https://doi.org/10.1109/SPICES.2015.7091517.

  25. Kaur, A., and Kaur, P., A comparative study of various exudate segmentation techniques for diagnosis of diabetic retinopathy. International Journal of Current Engineering and Technology 46:142–146, 2016.

    Google Scholar 

  26. Zhao, Y., Raichle, M. E., Wen, J., Benzinger, T. L., Fagan, A. M., Hassenstab, J. et al., In vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imaging. Neuroimage 148:296–304, 2017.

    Article  PubMed  Google Scholar 

  27. Sankari, Z., and Adeli, H., Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence. J. Neurosci. Methods 197(1):165–170, 2011. https://doi.org/10.1016/j.jneumeth.2011.01.027.

    Article  PubMed  Google Scholar 

  28. Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J. et al., Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. Neuroimage 50:162–174, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y., Wang, S., Sui, Y., Yang, M., Liu, B., Cheng, H. et al., Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J. Alzheimers Dis. 65:855–869, 2018.

    Article  PubMed  Google Scholar 

  30. Wang, S.-H., Zhang, Y., Li, Y.-J., Jia, W.-J., Liu, F.-Y., Yang, M.-M. et al., Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimed. Tools Appl. 77(9):10393–10417, 2016.

    Article  Google Scholar 

  31. Zhang, Y., Wang, S., and Dong, Z., Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 144:171–184, 2014.

    Article  Google Scholar 

  32. Zhang, Y., and Wang, S., Detection of Alzheimer’s disease by displacement field and machine learning. Peer J 3:e1251, 2015.

    Article  PubMed  Google Scholar 

  33. El-Dahshan, E.-S. A., Hosny, T., and Salem, A.-B. M., Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing 20:433–441, 2010.

    Article  Google Scholar 

  34. Wang, S.-H., Du, S., Zhang, Y., Phillips, P., Wu, L.-N., Chen, X.-Q. et al., Alzheimer’s disease detection by pseudo Zernike moment and linear regression classification. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 16:11–15, 2017.

    Google Scholar 

  35. Gorji, H. T., and Haddadnia, J., A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI. Neuroscience 305:361–371, 2015.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, S., Zhang, Y., Liu, G., Phillips, P., and Yuan, T.-F., Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. J. Alzheimers Dis. 50:233–248, 2016.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y., Dong, Z., Phillips, P., Wang, S., Ji, G., Yang, J. et al., Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9:66, 2015.

    PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y., Wang, S., Sun, P., and Phillips, P., Pathological brain detection based on wavelet entropy and Hu moment invariants. Biomed. Mater. Eng. 26:S1283–S1290, 2015.

    PubMed  Google Scholar 

  39. Hett, K., Ta, V.-T., Manjón, J. V., and Coupé, P., Adaptive fusion of texture-based grading for Alzheimer's disease classification. Comput. Med. Imaging Graph. 70:8–16, 2018. https://doi.org/10.1016/j.compmedimag.2018.08.002.

    Article  PubMed  Google Scholar 

  40. Gao, X. W., Hui, R., and Tian, Z., Classification of CT brain images based on deep learning networks. Comput. Methods Prog. Biomed. 138:49–56, 2017.

    Article  Google Scholar 

  41. Johnson, K.A., and Becker J.A. The whole brain atlas. Available from Harvard Medical School, USA http://www.med.harvard.edu/aanlib/

  42. Zhu, Y., and Huang, C., An improved median filtering algorithm for image noise reduction. Phys. Procedia 25:609–616, 2012.

    Article  Google Scholar 

  43. Acharya, U. R., Sree, S. V., Ang, P. C. A., Yanti, R., and Suri, J. S., Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 22(02):1250002, 2012. https://doi.org/10.1142/S0129065712500025.

    Article  PubMed  Google Scholar 

  44. Zhou, N., and Wang, L., A Modified T-test Feature Selection Method and Its Application on the Hap Map Genotype Data. Genomics Proteomics Bioinformatics 5(3–4):242–249, 2007. https://doi.org/10.1016/S1672-0229(08)60011-X.

    Article  PubMed  Google Scholar 

  45. Chandra, B., and Gupta, M., An efficient statistical feature selection approach for classification of gene expression data. J. Biomed. Inform. 44(4):529–535, 2011. https://doi.org/10.1016/j.jbi.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  46. Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., and Nachiappan, S., Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recogn. Lett. 94:87–95, 2017. https://doi.org/10.1016/j.patrec.2017.05.028.

    Article  Google Scholar 

  47. Raja, N. S. M., Fernandes, S. L., Dey, N., Satapathy, S. C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput.:1–12, 2018. https://doi.org/10.1007/s12652-018-0854-8.

  48. Acharya, U. R., Sudarshan, V. K., Adeli, H., Santhosh, J., and Koh, J. E. W., A novel depression diagnosis index using nonlinear features in EEG signals. Eur. Neurol. 74(1–2):79–83.

    Article  PubMed  Google Scholar 

  49. Acharya, U. R., Faust, O., Sree, S. V., Molinari, F., Garberoglio, R., and Suri, J. S., Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms. Technology in Cancer Research & treatment 10(4):371–380, 2011.

    Article  CAS  Google Scholar 

  50. Gudigar, A., Raghavendra, U., San, T. R., Ciaccio, E. J., and Acharya, U. R., Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study. Futur. Gener. Comput. Syst. 90:359–367, 2019.

    Article  Google Scholar 

  51. Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., and Chua, C. K., Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl.-Based Syst. 132:62–71, 2017.

    Article  Google Scholar 

  52. Jha, D., and Kwon, G.-R., Contourlet-based feature extraction for computer-aided classification of Alzheimer’s disease. Alzheimers and Dementia 14(7):1473, 2018. https://doi.org/10.1016/j.jalz.2018.06.2498.

    Article  Google Scholar 

  53. Krishnan, K. G., Vanathi, P. T., and Abinaya, R., Texture classification using Shearlet transform energy features. Communications in Computer and Information Science 679:3–13, 2016.

    Article  Google Scholar 

  54. Lim, W.-Q., The discrete Shearlet transform: a new directional transform and compactly supported Shearlet frames. IEEE Trans. Image Process. 19(5):1166–1180, 2010. https://doi.org/10.1109/TIP.2010.2041410.

    Article  PubMed  Google Scholar 

  55. Lim, W.-Q., Nonseparable Shearlet transform. IEEE Trans. Image Process. 22(5):2056–2065, 2013. https://doi.org/10.1109/TIP.2013.2244223.

    Article  PubMed  Google Scholar 

  56. Selesnick, I. W., Baraniuk, R. G., and Kingsbury, N. C., The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6):123–151, 2005. https://doi.org/10.1109/MSP.2005.1550194.

    Article  Google Scholar 

  57. Wang, S. et al., Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection. Appl. Sci. 6(6):169, 2016. https://doi.org/10.3390/app6060169.

    Article  Google Scholar 

  58. Ayadi, W., Elhamzi, W., Charfi, I., and Atri, M., A hybrid feature extraction approach for brain MRI classification based on Bag-of-words. Biomedical Signal Processing and Control 48:144–152, 2019. https://doi.org/10.1016/j.bspc.2018.10.010.

    Article  Google Scholar 

  59. Chaplot, S., Patnaik, L. M., and Jagannathan, N. R., Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomedical Signal Processing and Control 1(1):86–92, 2006.

    Article  Google Scholar 

  60. Zhang, Y., and Lenan, W., An MR brain images classifier via principal component analysis and kernel support vector machine. Prog. Electromagn. Res. 130:369–388, 2012.

    Article  Google Scholar 

  61. Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., and Sivaprasad, S., Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 20:70–79, 2017.

    Google Scholar 

  62. Tan, J. H. et al., Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420:66–76, 2017.

    Article  Google Scholar 

  63. Raghavendra, U. et al., Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 441:41–49, 2018.

    Article  Google Scholar 

  64. Raghavendra, U., Bhat, N. S., Gudigar, A., and Acharya, U. R., Automated system for the detection of thoracolumbar fractures using a CNN architecture. Futur. Gener. Comput. Syst. 85:184–189, 2018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accord with the ethical standards of the institutional and/or national research committee (MREC ID No. 2017112–5771) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, U.R., Fernandes, S.L., WeiKoh, J.E. et al. Automated Detection of Alzheimer’s Disease Using Brain MRI Images– A Study with Various Feature Extraction Techniques. J Med Syst 43, 302 (2019). https://doi.org/10.1007/s10916-019-1428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1428-9

Keywords

Navigation