Skip to main content

Advertisement

Log in

White Matter Segmentation Algorithm for DTI Images Based on Super-Pixel Full Convolutional Network

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) is a new imaging method that can be used to non-invasively measure the diffusion coefficient of water molecules in biological tissue structures in recent years. Since the DTI data is a tensor space, its segmentation is different from ordinary MRI images. Based on the existing deep learning model, an improved image semantic segmentation method based on super-pixels and conditional random field is proposed. Firstly, this paper uses the existing feature extraction model based on deep learning to obtain rough semantic segmentation results, including high-level semantic information of the image but lacking details of the image. In addition, the super-pixel segmentation algorithm is implemented to obtain super-pixels that carries more low-level information. Secondly, due to the lack of image details in rough segmentation results, the segmentation of the edge of the image is inaccurate. In this paper, a boundary optimization algorithm is proposed to optimize the edge segmentation accuracy of the rough results. Finally, the use of super-pixels for local boundary optimization can improve the segmentation accuracy. Experiments results show that this segment is a practical and effective method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lawes, I. N. C., Barrick, T. R., Murugam, V., Spierings, N., Evans, D. R., Song, M., and Clark, C. A., Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection[J]. NeuroImage 39(1):62–79, 2008.

    Article  PubMed  Google Scholar 

  2. Leng, X., Fang, P., Lin, H., Qin, C., Tan, X., Liang, Y., Zhang, C., Wang, H., An, J., Wu, D., Liu, Q., and Qiu, S., Application of a machine learning method to whole brain white matter injury after radiotherapy for nasopharyngeal carcinoma[J]. Cancer Imaging 19(1):19, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pengjiang Qian, Yizhang Jiang, Zhaohong Deng, Lingzhi Hu, Shouwei Sun, Shitong Wang, Raymond F. Muzic Jr., Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering[J].IEEE Transactions on Cybernetics,2016, 46(1): 181-193.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petronella, A., Vincken, K. L., Osch, M. J. P. V. et al., Probabilistic segmentation of white matter lesions in MR imaging.[J]. Neuroimage 21(3):1037–1044, 2004.

    Article  Google Scholar 

  5. Honghao Gao, Wanqiu Huang, Yucong Duan, Xiaoxian Yang, Qiming Zou. Research on Cost-Driven Services Composition in an Uncertain Environment[J]. Journal of Internet Technology(JIT), 2019,20(3):755-769.

  6. Harris, G. J., Barta, P. E., Peng, L. W. et al., MR volume segmentation of gray matter and white matter using manual thresholding: Dependence on image brightness[J]. AJNR Am. J. Neuroradiol. 15(2):225–230, 1994.

    CAS  PubMed  Google Scholar 

  7. O’Donnell, L. J., and Westin, C. F., Automatic tractography segmentation using a high-dimensional white matter atlas[J]. IEEE Trans. Med. Imaging 26(11):1562–1575, 2007.

    Article  PubMed  Google Scholar 

  8. Lao, Z., Shen, D., Liu, D., Jawad, A. F., Melhem, E. R., Launer, L. J., Bryan, R. N., and Davatzikos, C., Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine[J]. Acad. Radiol. 15(3):300–313, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alfano, B., Brunetti, A., Larobina, M., Quarantelli, M., Tedeschi, E., Ciarmiello, A., Covelli, E. M., and Salvatore, M., Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis[J]. J. Mag. Reson. Imaging : JMRI 12(6):799–807, 2000.

    Article  CAS  Google Scholar 

  10. Valdés Hernández, M. d. C., Ferguson, K. J., Chappell, F. M. et al., New multispectral MRI data fusion technique for white matter lesion segmentation: Method and comparison with thresholding in FLAIR images[J]. Eur. Radiol. 20(7):1684–1691, 2010.

    Article  PubMed Central  Google Scholar 

  11. Gelineau-Morel, R., Tomassini, V., Jenkinson, M. et al., The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis[J]. Hum. Brain Mapp. 23(21):4520–4530, 2012.

    Google Scholar 

  12. Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I. W. M., Sanchez, C. I., Litjens, G., de Leeuw, F. E., van Ginneken, B., Marchiori, E., and Platel, B., Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities[J]. Sci. Rep. 7(1):5110–5123, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Preetha Phillips, Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm[J], Neurocomputing, 2018, 272: 668-676

  14. Hongwei, L., Gongfa, J., Ruixuan, W. et al., Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images[J]. NeuroImage 53(8):119–123, 2018.

    Google Scholar 

  15. Yizhang Jiang, Kaifa Zhao, Kaijian Xia, Jing Xue, Leyuan Zhou, Yang Ding, Pengjiang Qian: A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation[J]. J. Medical Systems 2019, 43(5): 118:1-118:9 

  16. Latini, F., Mårtensson, J., Larsson, E. M. et al., Segmentation of the inferior longitudinal fasciculus in the human brain: A white matter dissection and diffusion tensor tractography study[J]. Brain Res. 1675:102–115, 2017.

    Article  CAS  PubMed  Google Scholar 

  17. Labra, N., Guevara, P., Duclap, D., Houenou, J., Poupon, C., Mangin, J. F., and Figueroa, M., Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas[J]. Neuroinformatics 15(1):71–86, 2017.

    Article  PubMed  Google Scholar 

  18. Sudre, C. H., Cardoso, M. J., and Ourselin, S., Longitudinal segmentation of age-related white matter hyperintensities[J]. Med. Image Anal. 38:50–64, 2017.

    Article  PubMed  Google Scholar 

  19. Qin, C., Guerrero, R., Bowles, C., Chen, L., Dickie, D. A., Valdes-Hernandez, M. C., Wardlaw, J., and Rueckert, D., A large margin algorithm for automated segmentation of white matter hyperintensity[J]. Pattern Recogn. 77:150–159, 2018.

    Article  Google Scholar 

  20. Kubicki, M., Khan, U., Westin, C. F., Pieper, S., McCarley, R., and Shenton, M., Atlas-based white matter segmentation of DTI in schizophrenia[J]. Schizophr. Res. 102(1):82–82, 2008.

    Article  Google Scholar 

  21. Bazin PL., Bogovic J., Reich D., Prince J.L., Pham D.L.Belief Propagation Based Segmentation of White Matter Tracts in DTI[C]. In:  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009.  Lecture Notes in Computer Science, vol 5761. Springer, Berlin, Heidelberg,943-950

  22. Kaijian Xia, Hongsheng Yin, Yu-Dong Zhang. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm[J]. J. Medical Systems ,2019, 43(1): 2:1-2:12 

  23. Klose, U., Erb, M., Saur, R. et al., Segmentation of the white matter in the brain based on MR-DTI fiber directions[J]. Z. Med. Phys. 15(4):247:259, 2005.

    Article  Google Scholar 

  24. Vassar, R. L., Naama, B. G., Jessica, R. et al., Identification of neonatal white matter on DTI: Influence of more inclusive thresholds for atlas segmentation[J]. PLoS ONE 9(12):5426–5439, 2014.

    Article  Google Scholar 

  25. Yu-Dong Zhang, Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform, Multimedia Tools and Applications, 2018, 77(17): 22821-22839

    Article  Google Scholar 

  26. Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., and Thiran, J. P., White matter fiber tract segmentation in DT-MRI using geometric flows[J]. Med. Image Anal. 9(3):223–236, 2005.

    Article  PubMed  Google Scholar 

  27. Niogi, S. N., Mukherjee, P., and Mccandliss, B. D., Diffusion tensor imaging segmentation of white matter structures using a reproducible objective quantification scheme (ROQS).[J]. Neuroimage 35(1):166–174, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bazin, P. L., Ye, C., Bogovic, J. A., Shiee, N., Reich, D. S., Prince, J. L., and Pham, D. L., Direct segmentation of the major white matter tracts in diffusion tensor images[J]. Neuroimage 58(2):458–468, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hao, X., Zygmunt, K., Whitaker, R. T., and Fletcher, P. T., Improved segmentation of white matter tracts with adaptive Riemannian metrics[J]. Med. Image Anal. 18(1):161–175, 2014.

    Article  PubMed  Google Scholar 

  30. Yizhang Jiang, Zhaohong Deng, Fu-Lai Chung, Guanjin Wang, Pengjiang Qian, Kup-Sze Choi, and Shitong Wang. Recognition of Epileptic EEG Signals Using a Novel Multi-View TSK Fuzzy System[J]. IEEE Trans. Fuzzy Systems, 2017, 25(1): 3-20.

  31. Kaijian Xia, Hongsheng Yin, Pengjiang Qian, Yizhang Jiang, Shuihua Wang,Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images[J]. IEEE Access,2019 7: 96349-96358 

Download references

Acknowledgments

This work is financially supported by Liaoning Province Natural Science Fund(NO: 201602725) and Shenyang Science and Technology Bureau Fund (NO:1801331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Mu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Human and animal rights

The paper does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Li, Q. & Zhang, Y. White Matter Segmentation Algorithm for DTI Images Based on Super-Pixel Full Convolutional Network. J Med Syst 43, 303 (2019). https://doi.org/10.1007/s10916-019-1431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1431-1

Keywords

Navigation