Skip to main content

Advertisement

Log in

Prediction of Clinical Pathologic Prognostic Factors for Rectal Adenocarcinoma: Volumetric Texture Analysis Based on Apparent Diffusion Coefficient Maps

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Texture analysis has been used to characterize and measure tissue heterogeneity in medical images. The purpose of this study was to investigate the potential of texture features derived from apparent diffusion coefficient (ADC) maps, to serve as imaging markers for predicting important histopathologic prognostic factors in rectal cancer. One hundred patients of rectal cancer received 3 T preoperative magnetic resonance imaging including diffusion-weighted imaging (DWI). Skewness, kurtosis, uniformity from the histogram and entropy, energy, inertia, correlation from gray-level co-occurrence matrix (GLCM) derived from whole-lesion volumes were measured. Independent sample t-test or Mann-Whitney U-test and receiver operating characteristic (ROC) curves were used for statistical analysis. Uniformity, energy and entropy were significantly different (p = 0.026, 0.001, and 0.006, respectively) between stage pT1–2 and pT3–4 tumors. Skewness, kurtosis and correlation were significantly different (p = 0.000, 0.006, and 0.041, respectively) between grade 1–2 and grade 3 tumors. Energy and entropy (p = 0.008 and 0.033, respectively) could significantly differentiate negative circumferential resection margin (CRM) from positive CRM. Furthermore, predicted probabilities derived by logistic regression analysis yielded greater area under the curve (AUC) in differentiating pT3–4 stage and grade 3 grade tumors. Texture features derived from ADC maps may useful to predict important histopathologic prognostic factors of rectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmoll, H. J., Van Cutsem, E., Stein, A., Valentini, V., Glimelius, B., Haustermans, K. et al., ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol 23:2479–2516, 2012. https://doi.org/10.1093/annonc/mds236.

    Article  CAS  PubMed  Google Scholar 

  2. Boras, Z., Kondza, G., Sisljagić, V., Busić, Z., Gmajnić, R., and Istvanić, T., Prognostic factors of local recurrence and survival after curative rectal cancer surgery: A single institution experience. Coll Antropol 36:1355–1361, 2012.

    PubMed  Google Scholar 

  3. Brown, G., Radcliffe, A. G., Newcombe, R. G., Dallimore, N. S., Bourne, M. W., and Williams, G. T., Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging. Br J Surg 90:355–364, 2003. https://doi.org/10.1002/bjs.4034.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, E. S., Kim, M. J., Park, S. C., Hur, B. Y., Hyun, J. H., Chang, H. J., Baek, J. Y., Kim, S. Y., Kim, D. Y., and Oh, J. H., Magnetic resonance imaging-detected extramural venous invasion in rectal Cancer before and after preoperative Chemoradiotherapy: Diagnostic performance and prognostic significance. Eur Radiol 28:496–505, 2018. https://doi.org/10.1007/s00330-017-4978-6.

    Article  PubMed  Google Scholar 

  5. Cienfuegos, J. A., Rotellar, F., Baixauli, J., Beorlegui, C., Sola, J. J., Arbea, L., Pastor, C., Arredondo, J., and Hernández-Lizoáin, J. L., Impact of perineural and lymphovascular invasion on oncological outcomes in rectal cancer treated with neoadjuvant chemoradiotherapy and surgery. Ann Surg Oncol 22:916–923, 2015. https://doi.org/10.1245/s10434-014-4051-5.

    Article  CAS  PubMed  Google Scholar 

  6. Bammer, R., Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184, 2003. https://doi.org/10.1016/S0720-048X(02)00303-0.

    Article  PubMed  Google Scholar 

  7. Padhani, A. R., Liu, G., Koh, D. M., Chenevert, T. L., Thoeny, H. C., Takahara, T. et al., Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 11:102–125, 2009.

    Article  CAS  Google Scholar 

  8. Curvo-Semedo, L., Lambregts, D. M., Maas, M., Beets, G. L., Caseiro-Alves, F., and Beets-Tan, R. G., Diffusion-weighted MRI in rectal cancer: Apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging 35:1365–1371, 2012. https://doi.org/10.1002/jmri.23589.

    Article  PubMed  Google Scholar 

  9. Attenberger, U. I., Pilz, L. R., Morelli, J. N., Hausmann, D., Doyon, F., Hofheinz, R., Kienle, P., Post, S., Michaely, H. J., Schoenberg, S. O., and Dinter, D. J., Multi-parametric MRI of rectal cancer - do quantitative functional MR measurements correlate with radiologic and pathologic tumor stages? Eur J Radiol 83:1036–1043, 2014. https://doi.org/10.1016/j.ejrad.2014.03.012.

    Article  CAS  PubMed  Google Scholar 

  10. Oh, J. W., Rha, S. E., Oh, S. N., Park, M. Y., Byun, J. Y., and Lee, A., Diffusion-weighted MRI of epithelial ovarian cancers: Correlation of apparent diffusion coefficient values with histologic grade and surgical stage. Eur J Radiol 84:590–595, 2015. https://doi.org/10.1016/j.ejrad.2015.01.005.

    Article  PubMed  Google Scholar 

  11. Hecht, E. M., Liu, M. Z., Prince, M. R., Jambawalikar, S., Remotti, H. E., Weisberg, S. W., Garmon, D., Lopez-Pintado, S., Woo, Y., Kluger, M. D., and Chabot, J. A., Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma? J Magn Reson Imaging 46:393–402, 2017. https://doi.org/10.1002/jmri.25581.

    Article  PubMed  Google Scholar 

  12. Barnes, S. L., Sorace, A. G., Whisenant, J. G., McIntyre, J. O., Kang, H., and Yankeelov, T. E., DCE- and DW-MRI as early imaging biomarkers of treatment response in a preclinical model of triple negative breast cancer. NMR Biomed 30:e3799, 2017. https://doi.org/10.1002/nbm.3799.

    Article  CAS  Google Scholar 

  13. Just, N., Improving tumor heterogeneity MRI assessment with histograms. Br J Cancer 111:2205–2213, 2014. https://doi.org/10.1038/bjc.2014.512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gillies, R. J., Kinahan, P. E., and Hricak, H., Radiomics: Images are more than pictures, they are data. Radiology 278:563–577, 2016. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  15. Becker, A. S., Ghafoor, S., Marcon, M., Perucho, J. A., Wurnig, M. C., Wagner, M. W., Khong, P. L., Lee, E. Y., and Boss, A., MRI texture features may predict differentiation and nodal stage of cervical cancer: A pilot study. Acta Radiol Open 6:2058460117729574, 2017. https://doi.org/10.1177/2058460117729574.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xia, K., Yin, H., Qian, P., Jiang, Y., and Wang, S., Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images. IEEE Access 7:96349–96358, 2019.

    Article  Google Scholar 

  17. Xia, K., Yin, H., and Zhang, Y., Deep semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. J. Medical Systems 43:2:1–2:12, 2018. https://doi.org/10.1007/s10916-018-1116-1.

    Article  Google Scholar 

  18. Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D. et al., Haralick texture analysis of prostate MRI: Utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25:2840–2850, 2015. https://doi.org/10.1007/s00330-015-3701-8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ytre-Hauge, S., Dybvik, J. A., Lundervold, A., Salvesen, Ø. O., Krakstad, C., Fasmer, K. E. et al., Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer. J Magn Reson Imaging 48:1637–1647, 2018. https://doi.org/10.1002/jmri.26184.

    Article  PubMed  Google Scholar 

  20. Ueno, Y., Forghani, B., Forghani, R., Dohan, A., Zeng, X. Z., Chamming's, F., Arseneau, J., Fu, L., Gilbert, L., Gallix, B., and Reinhold, C., Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification-a preliminary analysis. Radiology 284:748–757, 2017. https://doi.org/10.1148/radiol.2017161950.

    Article  PubMed  Google Scholar 

  21. Kyriazi, S., Collins, D. J., Messiou, C., Pennert, K., Davidson, R. L., Giles, S. L., Kaye, S. B., and Desouza, N. M., Metastatic ovarian and primary peritoneal cancer: Assessing chemotherapy response with diffusion-weighted MR imaging--value of histogram analysis of apparent diffusion coefficients. Radiology 261:182–192, 2011. https://doi.org/10.1148/radiol.11110577.

    Article  PubMed  Google Scholar 

  22. Choi, M. H., Oh, S. N., Rha, S. E., Choi, J. I., Lee, S. H., Jang, H. S., Kim, J. G., Grimm, R., and Son, Y., Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer. J Magn Reson Imaging 44:212–220, 2016. https://doi.org/10.1002/jmri.25117.

    Article  PubMed  Google Scholar 

  23. Meng, Y., Zhang, C., Zou, S., Zhao, X., Xu, K., Zhang, H., and Zhou, C., MRI texture analysis in predicting treatment response to neoadjuvant chemoradiotherapy in rectal cancer. Oncotarget 9:11999–12008, 2017. https://doi.org/10.18632/oncotarget.23813.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Edge SB, Byrd DR, Compton CC (2010) American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. Springer, New York

  25. Bosman, F. T., Carneiro, F., and Hruban, R. H., WHO classification of tumors of the digestive system. Geneva: World Health Organization, 2010.

    Google Scholar 

  26. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L., Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44:837–845, 1988.

    Article  CAS  Google Scholar 

  27. Kim, J. H., Ko, E. S., Lim, Y., Lee, K. S., Han, B. K., Ko, E. Y., Hahn, S. Y., and Nam, S. J., Breast Cancer heterogeneity: MR imaging texture analysis and survival outcomes. Radiology 282:665–675, 2017. https://doi.org/10.1148/radiol.2016160261.

    Article  PubMed  Google Scholar 

  28. Caruso, D., Zerunian, M., Ciolina, M., de Santis, D., Rengo, M., Soomro, M. H. et al., Haralick's texture features for the prediction of response to therapy in colorectal cancer: A preliminary study. Radiol Med 123:161–167, 2018. https://doi.org/10.1007/s11547-017-0833-8.

    Article  PubMed  Google Scholar 

  29. Duvauferrier, R., Bezy, J., Bertaud, V., Toussaint, G., Morelli, J., and Lasbleiz, J., Texture analysis software: Integration with a radiological workstation. Stud Health Technol Inform 180:1030–1034, 2012.

    PubMed  Google Scholar 

  30. Liu, L., Liu, Y., Xu, L., Li, Z., Lv, H., Dong, N., Li, W., Yang, Z., Wang, Z., and Jin, E., Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging 45:1798–1808, 2017. https://doi.org/10.1002/jmri.25460.

    Article  PubMed  Google Scholar 

  31. Li, W., Jiang, Z., Guan, Y., Chen, Y., Huang, X., Liu, S., He, J., Zhou, Z., and Ge, Y., Whole-lesion apparent diffusion coefficient first- and second-order texture features for the characterization of rectal Cancer pathological factors. J Comput Assist Tomogr 42:642–647, 2018. https://doi.org/10.1097/RCT.0000000000000731.

    Article  PubMed  Google Scholar 

  32. Song, J. H., Kim, S. H., Lee, J. H., Cho, H. M., Kim, D. Y., Kim, T. H. et al., Significance of histologic tumor grade in rectal cancer treated with preoperative chemoradiotherapy followed by curative surgery: A multi-institutional retrospective study. Radiother Oncol 118:387–392, 2016. https://doi.org/10.1016/j.radonc.2015.11.028.

    Article  PubMed  Google Scholar 

  33. Zhu, L., Pan, Z., Ma, Q., Yang, W., Shi, H., Fu, C., Yan, X., Du, L., Yan, F., and Zhang, H., Diffusion kurtosis imaging study of rectal adenocarcinoma associated with Histopathologic prognostic factors: Preliminary findings. Radiology 284:66–76, 2017. https://doi.org/10.1148/radiol.2016160094.

    Article  PubMed  Google Scholar 

  34. Rozenberg, R., Thornhill, R. E., Flood, T. A., Hakim, S. W., Lim, C., and Schieda, N., Whole-tumor quantitative apparent diffusion coefficient histogram and texture analysis to predict Gleason score upgrading in intermediate-risk 3 + 4 = 7 prostate Cancer. AJR Am J Roentgenol 206:775–782, 2016. https://doi.org/10.2214/AJR.15.15462.

    Article  PubMed  Google Scholar 

  35. Meng, J., Zhu, L., Zhu, L., Xie, L., Wang, H., Liu, S. et al., Whole-lesion ADC histogram and texture analysis in predicting recurrence of cervical cancer treated with CCRT. Oncotarget 8:92442–92453, 2017. https://doi.org/10.18632/oncotarget.21374.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kaur, H., Choi, H., You, Y. N., Rauch, G. M., Jensen, C. T., Hou, P., Chang, G. J., Skibber, J. M., and Ernst, R. D., MR imaging for preoperative evaluation of primary rectal cancer: Practical considerations. Radiographics 32:389–409, 2012. https://doi.org/10.1148/rg.322115122.

    Article  PubMed  Google Scholar 

  37. Akashi, M., Nakahusa, Y., Yakabe, T., Egashira, Y., Koga, Y., Sumi, K., Noshiro, H., Irie, H., Tokunaga, O., and Miyazaki, K., Assessment of aggressiveness of rectal cancer using 3-T MRI: Correlation between the apparent diffusion coefficient as a potential imaging biomarker and histologic prognostic factors. Acta Radiol 55:524–531, 2013. https://doi.org/10.1177/0284185113503154.

    Article  PubMed  Google Scholar 

  38. Sun, Y., Tong, T., Cai, S., Bi, R., Xin, C., and Gu, Y., Apparent diffusion coefficient (ADC) value: A potential imaging biomarker that reflects the biological features of rectal cancer. PLoS One 9:e109371, 2014. https://doi.org/10.1371/journal.pone.0109371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cui, Y., Yang, X., Du, X., Zhuo, Z., Xin, L., and Cheng, X., Whole-tumor diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors. Eur Radiol 28:1485–1494, 2018. https://doi.org/10.1007/s00330-017-5094-3.

    Article  PubMed  Google Scholar 

  40. Merkel, S., Mansmann, U., Siassi, M., Papadopoulos, T., Hohenberger, W., and Hermanek, P., The prognostic inhomogeneity in pT3 rectal carcinomas. Int J Colorectal Dis 16:298–304, 2001.

    Article  CAS  Google Scholar 

  41. Cho, S. H., Kim, S. H., Bae, J. H., Jang, Y. J., Kim, H. J., Lee, D., Park, J. S., and Society of North America (RSNA), Prognostic stratification by extramural depth of tumor invasion of primary rectal cancer based on the Radiological Society of North America proposal. AJR Am J Roentgenol 202:1238–1244, 2014. https://doi.org/10.2214/AJR.13.11311.

    Article  PubMed  Google Scholar 

  42. Becker, A. S., Wagner, M. W., Wurnig, M. C., and Boss, A., Diffusion-weighted imaging of the abdomen: Impact of b-values on texture analysis features. NMR Biomed 30:e3669, 2017. https://doi.org/10.1002/nbm.3669.

    Article  Google Scholar 

Download references

Funding

This study was funded by Jiangsu Provincial Medical Youth Talent (QNRC2016212), Suzhou Clinical Special Disease Diagnosis and Treatment Program (LCZX201823), Suzhou GuSu Medical Talent Project (GSWS2019077) and Science and Technology Bureau of Changshu (CS201624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Lu.

Ethics declarations

Conflict of Interest

Author Zhihua Lu has received research grants from Jiangsu Provincial Medical Youth Talent, Suzhou Clinical Special Disease Diagnosis and Treatment Program, Suzhou GuSu Medical Talent Project and Science and Technology Bureau of Changshu. Author Jianlong Jiang has received research grant from Suzhou Clinical Special Disease Diagnosis and Treatment Program. All authors have no relevant conflicts of interest including specific financial interests relevant to the subject of our manuscript.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of Changshu Hospital Affiliated to Soochow University. Requirements for written informed consent were waived due to the retrospective nature of the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Zhihua Lu and Lei Wang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Wang, L., Xia, K. et al. Prediction of Clinical Pathologic Prognostic Factors for Rectal Adenocarcinoma: Volumetric Texture Analysis Based on Apparent Diffusion Coefficient Maps. J Med Syst 43, 331 (2019). https://doi.org/10.1007/s10916-019-1464-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1464-5

Keywords

Navigation