Skip to main content
Log in

Stomach Deformities Recognition Using Rank-Based Deep Features Selection

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient’s deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust features selection. The ulcer abnormalities from WCE videos are initially extracted through a proposed color features based low level and high-level saliency (CFbLHS) estimation method. Later, DenseNet CNN model is utilized and through transfer learning (TL) features are computed prior to feature optimization using Kapur’s entropy. A parallel fusion methodology is opted for the selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in 21.15 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., and Jemal, A., Cancer statistics, 2017. CA Cancer J. Clin. 67:7–30, 2017.

    Article  Google Scholar 

  2. Fu, Y., Zhang, W., Mandal, M., and Meng, M. Q.-H., Computer-aided bleeding detection in WCE video. IEEE journal of biomedical and health informatics 18:636–642, 2014.

    Article  Google Scholar 

  3. Iddan, G., Meron, G., Glukhovsky, A., and Swain, P., Wireless capsule endoscopy. Nature 405:417, 2000.

    Article  CAS  Google Scholar 

  4. Mergener, K., Update on the use of capsule endoscopy. Gastroenterol. Hepatol. 4:107, 2008.

    Google Scholar 

  5. Liaqat, A., Khan, M. A., Shah, J. H., Sharif, M., Yasmin, M., and Fernandes, A. S. L., Automated ulcer and bleeding classification from Wce images using multiple features fusion and selection. Journal of Mechanics in Medicine and Biology 18:1850038, 2018.

    Article  Google Scholar 

  6. Nasir, M., Attique Khan, M., Sharif, M., Lali, I. U., Saba, T., and Iqbal, T., An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc. Res. Tech. 81:528–543, 2018.

    Article  Google Scholar 

  7. Khan, M. A., Akram, T., Sharif, M., Shahzad, A., Aurangzeb, K., Alhussein, M. et al., An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 18:638, 2018.

    Article  Google Scholar 

  8. Sharif, M., Khan, M. A., Iqbal, Z., Azam, M. F., Lali, M. I. U., and Javed, M. Y., Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput. Electron. Agric. 150:220–234, 2018.

    Article  Google Scholar 

  9. Sharif, M., Tanvir, U., Munir, E. U., Khan, M. A., and Yasmin, M., Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J. Ambient. Intell. Humaniz. Comput.:1–20, 2018.

  10. Akram, T., Khan, M. A., Sharif, M., and Yasmin, M., Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J. Ambient. Intell. Humaniz. Comput.:1–20, 2018.

  11. Nur, N., and Tjandrasa, H., Exudate segmentation in retinal images of diabetic retinopathy using saliency method based on region. In: Journal of Physics: Conference Series, 2018, 012110.

    Google Scholar 

  12. Chatterjee, S., Dey, D., and Munshi, S., Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomedical signal processing and control 40:252–262, 2018.

    Article  Google Scholar 

  13. Sharif, M., Khan, M. A., Faisal, M., Yasmin, M., and Fernandes, S. L., A framework for offline signature verification system: Best features selection approach. Pattern Recogn. Lett., 2018.

  14. Faris, H., Hassonah, M. A., Ala’M, A.-Z., Mirjalili, S., and Aljarah, I., A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. & Applic. 30:2355–2369, 2018.

    Article  Google Scholar 

  15. Kaur, T., Saini, B. S., and Gupta, S., A novel feature selection method for brain tumor MR image classification based on the fisher criterion and parameter-free bat optimization. Neural Comput. & Applic. 29:193–206, 2018.

    Article  Google Scholar 

  16. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K., Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., and Sun, J., Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770–778.

  18. Simonyan, K., and Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

    Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D. et al., Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1–9.

  20. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 779–788.

  21. Fernandes, S. L., Rajinikanth, V., and Kadry, S., A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consumer Electronics Magazine 8:31–36, 2019.

    Article  Google Scholar 

  22. Fernandes, S. L., Gurupur, V. P., Lin, H., and Martis, R. J., A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. Journal of Medical Imaging and Health Informatics 7:1841–1850, 2017.

    Article  Google Scholar 

  23. Khan, S. A., Nazir, M., Khan, M. A., Saba, T., Javed, K., Rehman, A. et al., Lungs nodule detection framework from computed tomography images using support vector machine. Microsc. Res. Tech. 82:1256–1266, 2019.

    Article  Google Scholar 

  24. Saba, T., Khan, M. A., Rehman, A., and Marie-Sainte, S. L., Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. J. Med. Syst. 43:289, 2019.

    Article  Google Scholar 

  25. Khan, M. A., Akram, T., Sharif, M., Saba, T., Javed, K., Lali, I. U. et al., Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc. Res. Tech. 82:741–763, 2019.

    Article  CAS  Google Scholar 

  26. Afza, F., Khan, M. A., Sharif, M., and Rehman, A., Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Microsc. Res. Tech. 82:1471–1488, 2019.

    Article  Google Scholar 

  27. Rajinikanth, V., Madhavaraja, N., Satapathy, S. C., and Fernandes, S. L., Otsu's multi-thresholding and active contour snake model to segment dermoscopy images. Journal of Medical Imaging and Health Informatics 7:1837–1840, 2017.

    Article  Google Scholar 

  28. Naz, I., Muhammad, N., Yasmin, M., Sharif, M., Shah, J. H., and Fernandes, S. L., Robust discrimination of leukocytes protuberant types for early diagnosis of leukemia. Journal of Mechanics in Medicine and Biology 19:1950055, 2019.

    Article  Google Scholar 

  29. Fernandes, S. L., Tanik, U. J., Rajinikanth, V., and Karthik, K. A., A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. & Applic.:1–12, 2019.

  30. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L., Big data analysis for brain tumor detection: Deep convolutional neural networks. Futur. Gener. Comput. Syst. 87:290–297, 2018.

    Article  Google Scholar 

  31. Khan, M. A., Lali, I. U., Rehman, A., Ishaq, M., Sharif, M., Saba, T. et al., Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microsc. Res. Tech. 82:909–922, 2019.

    Article  Google Scholar 

  32. Khan, M. A., Rashid, M., Sharif, M., Javed, K., and Akram, T., Classification of gastrointestinal diseases of stomach from WCE using improved saliency-based method and discriminant features selection. Multimed. Tools Appl.:1–28, 2019.

  33. Sharif, M., Attique Khan, M., Rashid, M., Yasmin, M., Afza, F., and Tanik, U. J., Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. Journal of Experimental & Theoretical Artificial Intelligence:1–23, 2019.

  34. Acharya, U. R., Fernandes, S. L., WeiKoh, J. E., Ciaccio, E. J., Fabell, M. K. M., Tanik, U. J. et al., Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J. Med. Syst. 43:302, 2019.

    Article  Google Scholar 

  35. Rajinikanth, V., Thanaraj, K. P., Satapathy, S. C., Fernandes, S. L., and Dey, N., Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound. In: Smart Intelligent Computing and Applications. Springer, 2019, 23–31.

  36. Khan, M. A., Javed, M. Y., Sharif, M., Saba, T., and Rehman, A., Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 International Conference on Computer and Information Sciences (ICCIS), 2019, 1–7.

  37. Sivakumar, P., and Kumar, B. M., A novel method to detect bleeding frame and region in wireless capsule endoscopy video. Clust. Comput.:1–7, 2018.

  38. Yuan, Y., Wang, J., Li, B., and Meng, M. Q.-H., Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Trans. Med. Imaging 34:2046–2057, 2015.

    Article  Google Scholar 

  39. Charfi, S., and El Ansari, M., Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy videos. In: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, 1–5.

  40. Suman, S., Malik, A. S., Pogorelov, K., Riegler, M., Ho, S. H., Hilmi, I. et al., Detection and classification of bleeding region in WCE images using color feature. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, 2017, 17.

  41. Sainju, S., Bui, F. M., and Wahid, K. A., Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 38:25, 2014.

    Article  Google Scholar 

  42. Zhang, X., Zhao, S., and Xie, L., Infinite curriculum learning for efficiently detecting gastric ulcers in WCE images. arXiv preprint arXiv:1809.02371, 2018.

  43. Fan, S., Xu, L., Fan, Y., Wei, K., and Li, L., Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys. Med. Biol. 63:165001, 2018.

    Article  Google Scholar 

  44. Hajabdollahi, M., Esfandiarpoor, R., Soroushmehr, S., Karimi, N., Samavi, S., and Najarian, K., Segmentation of bleeding regions in wireless capsule endoscopy images an approach for inside capsule video summarization. arXiv preprint arXiv:1802.07788, 2018.

  45. Xing, X., Jia, X., and Meng, M.-H., Bleeding detection in wireless capsule endoscopy image video using Superpixel-color histogram and a subspace KNN classifier. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, 1–4.

  46. Maghsoudi, O. H., and Alizadeh, M., Feature based framework to detect diseases, tumor, and bleeding in wireless capsule endoscopy. arXiv preprint arXiv:1802.02232, 2018.

  47. Koulaouzidis, A., Iakovidis, D. K., Karargyris, A., and Plevris, J. N., Optimizing lesion detection in small-bowel capsule endoscopy: From present problems to future solutions. Expert review of gastroenterology & hepatology 9:217–235, 2015.

    Article  CAS  Google Scholar 

  48. Fulkerson, B., Vedaldi, A., and Soatto, S., Class segmentation and object localization with superpixel neighborhoods. In: Computer Vision, 2009 IEEE 12th International Conference on, 2009, 670–677.

  49. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q., Densely connected convolutional networks. In: CVPR, 2017, 3.

  50. Yin, X., Yu, X., Sohn, K., Liu, X., and Chandraker, M., Feature transfer learning for deep face recognition with long-tail data. arXiv preprint arXiv:1803.09014, 2018.

    Google Scholar 

  51. Rashid, M., Khan, M. A., Sharif, M., Raza, M., Sarfraz, M. M., and Afza, F., Object detection and classification: A joint selection and fusion strategy of deep convolutional neural network and SIFT point features. Multimed. Tools Appl. 78:15751–15777, 2019.

    Article  Google Scholar 

  52. Raja, N., Rajinikanth, V., Fernandes, S. L., and Satapathy, S. C., Segmentation of breast thermal images using Kapur's entropy and hidden Markov random field. Journal of Medical Imaging and Health Informatics 7:1825–1829, 2017.

    Article  Google Scholar 

  53. Heidari, A. A., Faris, H., Aljarah, I., and Mirjalili, S., An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft. Comput.:1–18, 2018.

  54. Khan, M. A., Akram, T., Sharif, M., Javed, M. Y., Muhammad, N., and Yasmin, M., An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern. Anal. Applic.:1–21, 2018.

  55. Lavanya, D., and Rani, K. U., Performance evaluation of decision tree classifiers on medical datasets. Int. J. Comput. Appl. 26:1–4, 2011.

    Google Scholar 

  56. Khan, M. A., Sharif, M., Javed, M. Y., Akram, T., Yasmin, M., and Saba, T., License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process. 12:200–209, 2017.

    Article  Google Scholar 

  57. Sharmila, R., and Velaga N. R., A weighted k-NN based approach for corridor level travel-time prediction, 2019.

  58. Adeel, A., Khan, M. A., Sharif, M., Azam, F., Umer, T., and Wan, S., Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. Sustainable Computing: Informatics and Systems, 2019. https://doi.org/10.1016/j.suscom.2019.08.002.

    Google Scholar 

  59. Suman, S., Hussin, F. A., Malik, A. S., Ho, S. H., Hilmi, I., Leow, A. H.-R. et al., Feature selection and classification of ulcerated lesions using statistical analysis for WCE images. Appl. Sci. 7:1097, 2017.

    Article  Google Scholar 

  60. Kundu, A., Bhattacharjee, A., Fattah, S., and Shahnaz, C., An automatic ulcer detection scheme using histogram in YIQ domain from wireless capsule endoscopy images. In: Region 10 Conference, TENCON 2017-2017 IEEE, 2017, 1300–1303.

  61. Yuan, Y., Li, B., and Meng, M. Q.-H., WCE abnormality detection based on saliency and adaptive locality-constrained linear coding. IEEE Trans. Autom. Sci. Eng. 14:149–159, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sharif.

Ethics declarations

Conflict of interest

All authors have no conflict of interest and contribute equally in this work for results compilation and other technical support.

Ethical approval (for animals)

Not Applicable.

Ethical approval (for human)

The datasets which are used in this work are publically available such as PH2, ISBI 2016 and ISBI 2017.

Informed consent

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Sharif, M., Akram, T. et al. Stomach Deformities Recognition Using Rank-Based Deep Features Selection. J Med Syst 43, 329 (2019). https://doi.org/10.1007/s10916-019-1466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1466-3

Keywords

Navigation