Skip to main content

Advertisement

Log in

Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices’ intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LGG:

Low-grade glioma

HGG:

High-grade glioma

MRI:

Magnetic resonance imaging

CT:

Computed tomography

DT :

Decision tree

LDA:

Linear discriminant analysis

PNN:

Probabilistic neural network

SSAE:

Stacked sparse auto encoder

NN:

Neural networks

MPSO:

Modified particle swarm optimization

PTPSA:

Piece-wise triangular prism surface area

FCM :

Fuzzy C-means

KNN:

k-nearest neighbor

ABC:

Artificial Bee Colony

CNN’s:

Convolutional neural networks

X:

Input image

H:

Hidden Layer

C:

Kernel vector

\( {\hat{\upvarphi}}_{\mathrm{c}} \) :

Average activation value

B:

bias

ε :

Activation module

δ :

Mean squared reconstruction error

AE:

Autoencoder

ρ :

Weight decay module

γ :

Sparsity penalty

Φ:

Sparsity parameter

Ω:

Controls weight

∅:

Softmax layer

ACC:

Accuracy

SE :

Sensitivity

SP:

Specificity

DSC:

Dice similarity coefficient

JSI:

Jaccard similarity index

ROC :

Receiver operating characteristic curve

JSI :

Jaccard similarity index

FPR :

False positive rate

FNR:

False negative rate

HPF:

High pass filter

References

  1. Anitha, R., and Raja, D. S. S., Development of computer-aided approach for brain tumor detection using random forest classifier. International Journal of Imaging Systems and Technology 28:48–53, 2018.

    Google Scholar 

  2. Aponte, Raoul J, Patel, Ankur R, Patel, Toral R, “Brain Tumors”, Neurocritical Care for the Advanced Practice Clinician:Springer, pp.251–268, 2018, ed.

    Google Scholar 

  3. De Wolde, H., Pruim, J., Mastik, M. F., Koudstaal, J., and Molenaar, W. M., Proliferative activity in human brain tumors: Comparison of histopathology and L-(1-11C) tyrosine PET. The Journal of Nuclear Medicine 38:1369, 1997.

    PubMed  Google Scholar 

  4. Bauer, S., Wiest, R., Nolte, L.-P., and Reyes, M., A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine & Biology 58:R97, 2013.

    Google Scholar 

  5. N. B. Bahadure, A. K. Ray, and H. P. Thethi, “Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM,” International journal of biomedical imaging, vol. 2017, 2017.

  6. N. Herald Anantha Rufus and D. Selvathi, “Performance analysis of brain tissues and tumor detection and grading system using ANFIS classifier,” International Journal of Imaging Systems and Technology, vol. 28, pp. 77–85, 2018.

  7. Van Meir, E. G., Hadjipanayis, C. G., Norden, A. D., Shu, H. K., Wen, P. Y., and Olson, J. J., Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA: a cancer journal for clinicians 60(3):166–193, 2010.

    Google Scholar 

  8. Tabatabai, G., Stupp, R., Van Den Bent, M. J., Hegi, M. E., Tonn, J. C., Wick, W., and Weller, M., Molecular diagnostics of gliomas: The clinical perspective. Acta neuropathologica 120(5):585–592, 2010.

    CAS  PubMed  Google Scholar 

  9. Aronen, H. J., Gazit, I. E., Louis, D. N., Buchbinder, B. R., Pardo, F. S., Weisskoff, R. M., Harsh, G. R., Cosgrove, G., Halpern, E. F., and Hochberg, F. H., Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic findings. Radiology 191(1):41–51, 1994.

    CAS  PubMed  Google Scholar 

  10. Krabbe, K., Gideon, P., Wagn, P., Hansen, U., Thomsen, C., and Madsen, F., MR diffusion imaging of human intracranial tumours. Neuroradiology 39(7):483–489, 1997.

    CAS  PubMed  Google Scholar 

  11. Provenzale, J. M., Mukundan, S., and Barboriak, D. P., Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239(3):632–649, 2006.

    PubMed  Google Scholar 

  12. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H., Brain tumor segmentation with deep neural networks. Medical image analysis 35:18–31, 2017.

    PubMed  Google Scholar 

  13. Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical image analysis 36:61–78, 2017.

    PubMed  Google Scholar 

  14. Pereira, S., Pinto, A., Alves, V., and Silva, C. A., Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging 35(5):1240–1251, 2016.

    PubMed  Google Scholar 

  15. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., and Fan, Y., A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Medical image analysis 43:98–111, 2018.

    PubMed  Google Scholar 

  16. Q. Wang, E. K. Liacouras, E. Miranda, U. S. Kanamalla, and V. Megalooikonomou, “Classification of brain tumors using MRI and MRS data,” in Medical Imaging 2007: Computer-Aided Diagnosis, 2007, p. 65140S.

  17. Cho, Y.-D., Choi, G.-H., Lee, S.-P., and Kim, J.-K., 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magnetic resonance imaging 21:663–672, 2003.

    PubMed  Google Scholar 

  18. Li, G.-Z., Yang, J., Ye, C.-Z., and Geng, D.-Y., Degree prediction of malignancy in brain glioma using support vector machines. Computers in Biology and Medicine 36(3):313–325, 2006.

    CAS  PubMed  Google Scholar 

  19. Devos, A., Simonetti, A., Van Der Graaf, M., Lukas, L., Suykens, J., Vanhamme, L., Buydens, L., Heerschap, A., and Van Huffel, S., The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. Journal of Magnetic Resonance 173(2):218–228, 2005.

    CAS  PubMed  Google Scholar 

  20. M. Agn, O. Puonti, P. M. af Rosenschöld, I. Law, and K. Van Leemput, “Brain tumor segmentation using a generative model with an RBM prior on tumor shape,” in International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2015, pp. 168–180.

  21. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L., Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Generation Computer Systems 87:290–297, 2018.

    Google Scholar 

  22. Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., and Nachiappan, S., Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recognition Letters 94:87–95, 2017.

    Google Scholar 

  23. Fernandes, S. L., Tanik, U. J., Rajinikanth, V., and Karthik, K. A., A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Computing and Applications:1–12, 2019.

  24. V. Rajinikanth, K. P. Thanaraj, S. C. Satapathy, S. L. Fernandes, and N. Dey, “Shannon’s Entropy and Watershed Algorithm Based Technique to Inspect Ischemic Stroke Wound,” in Smart Intelligent Computing and Applications, ed: Springer, 2019, pp. 23–31.

  25. Amin, J., Sharif, M., Yasmin, M., Ali, H., and Fernandes, S. L., A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. Journal of Computational Science 19:153–164, 2017.

    Google Scholar 

  26. Sharif, M., Khan, M. A., Faisal, M., Yasmin, M., and Fernandes, S. L., A framework for offline signature verification system: Best features selection approach. Pattern Recognition Letters, 2018.

  27. Naqi, S., Sharif, M., Yasmin, M., and Fernandes, S. L., Lung nodule detection using polygon approximation and hybrid features from CT images. Current Medical Imaging Reviews 14:108–117, 2018.

    Google Scholar 

  28. Liaqat, A., Khan, M. A., Shah, J. H., Sharif, M., Yasmin, M., and Fernandes, S. L., Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. Journal of Mechanics in Medicine and Biology 18:1850038, 2018.

    Google Scholar 

  29. Wang, T., Cheng, I., and Basu, A., Fluid vector flow and applications in brain tumor segmentation. IEEE Transactions on Biomedical Engineering 56(3):781–789, 2009.

    PubMed  Google Scholar 

  30. Al-Okaili, R. N., Krejza, J., Woo, J. H., Wolf, R. L., O'Rourke, D. M., Judy, K. D., Poptani, H., and Melhem, E. R., Intraaxial brain masses: MR imaging–based diagnostic strategy—Initial experience. Radiology 243(2):539–550, 2007.

    PubMed  Google Scholar 

  31. Verma, R., Zacharaki, E. I., Ou, Y., Cai, H., Chawla, S., Lee, S.-K., Melhem, E. R., Wolf, R., and Davatzikos, C., Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Academic radiology 15(8):966–977, 2008.

    PubMed  PubMed Central  Google Scholar 

  32. Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., and Ahuja, C. K., A novel content-based active contour model for brain tumor segmentation. Magnetic resonance imaging 30(5):694–715, 2012.

    PubMed  Google Scholar 

  33. Schad, L. R., Blüml, S., and Zuna, I., IX. MR tissue characterization of intracranial tumors by means of texture analysis. Magnetic resonance imaging 11(6):889–896, 1993.

    CAS  PubMed  Google Scholar 

  34. Clark, M. C., Hall, L. O., Goldgof, D. B., Velthuizen, R., Murtagh, F. R., and Silbiger, M. S., Automatic tumor segmentation using knowledge-based techniques. IEEE transactions on medical imaging 17(2):187–201, 1998.

    CAS  PubMed  Google Scholar 

  35. Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., and Ahuja, C. K., A package-SFERCB-“segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”. Applied Soft Computing 47:151–167, 2016.

    Google Scholar 

  36. Jiang, J., Wu, Y., Huang, M., Yang, W., Chen, W., and Feng, Q., 3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets. Computerized Medical Imaging and Graphics 37:512–521, 2013.

    PubMed  Google Scholar 

  37. A. Ortiz, J. M. Gorriz, J. Ramírez, D. Salas-Gonzalez, and A. s. D. N. I. J. Neurocomputing, “Improving MRI segmentation with probabilistic GHSOM and multiobjective optimization,” vol. 114, pp. 118–131, 2013.

  38. P. Dvořák and B. Menze, “Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation,” in International MICCAI Workshop on Medical Computer Vision, 2015, pp. 59–71.

    Google Scholar 

  39. Chen, L., Bentley, P., and Rueckert, D., Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage: Clinical, 2017.

    Google Scholar 

  40. H. Larochelle and P.-M. Jodoin, “A Convolutional Neural Network Approach to Brain Tumor Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: First International Workshop, Brainles 2015, Held in conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Revised Selected Papers, 2016, p. 195.

  41. X. Chen and E. Konukoglu, “Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders,” arXiv preprint arXiv:1806.04972, 2018.

  42. G. B. Huang and V. Jain, “Deep and wide multiscale recursive networks for robust image labeling,” arXiv preprint arXiv:1310.0354, 2013.

  43. M. Lyksborg, O. Puonti, M. Agn, and R. Larsen, “An ensemble of 2D convolutional neural networks for tumor segmentation,” in Scandinavian Conference on Image Analysis, 2015, pp. 201–211.

  44. V. Rao, M. S. Sarabi, and A. Jaiswal, “Brain tumor segmentation with deep learning,” MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59, 2015.

  45. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

  46. P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain tumor type classification via capsule networks,” in 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 3129–3133.

  47. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., and Erickson, B. J., Deep learning for brain MRI segmentation: State of the art and future directions. Journal of digital imaging 30(4):449–459, 2017.

    PubMed  PubMed Central  Google Scholar 

  48. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L., A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 2017.

  49. D. Matecki, “Ćwiczenie 2: Przetwarzanie i rekonstrukcja sygnałów.”

  50. J. S. Lim, “Two-dimensional signal and image processing,” Englewood Cliffs, NJ, Prentice Hall, 1990, 710 p., 1990.

  51. Møller, M. F., A scaled conjugate gradient algorithm for fast supervised learning. Neural networks 6:525–533, 1993.

    Google Scholar 

  52. G. Urban, M. Bendszus, F. Hamprecht, and J. Kleesiek, “Multi-modal brain tumor segmentation using deep convolutional neural networks,” MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winning contribution, pp. 31–35, 2014.

  53. S. M. Reza, R. Mays, and K. M. Iftekharuddin, “Multi-fractal detrended texture feature for brain tumor classification,” in Proceedings of SPIE--the International Society for Optical Engineering, 2015.

    Google Scholar 

  54. Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., and Wiest, R., The multimodal brain tumor image segmentation benchmark (BRATS). IEEE transactions on medical imaging 34(10):1993–2024, 2015.

    PubMed  Google Scholar 

  55. Chen, S., Ding, C., and Liu, M., Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recognition 88:90–100, 2019.

    Google Scholar 

  56. Wu, W., Chen, A. Y., Zhao, L., and Corso, J. J., Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. International journal of computer assisted radiology and surgery 9(2):241–253, 2014.

    PubMed  Google Scholar 

  57. Bauer, S., Fejes, T., Slotboom, J., Wiest, R., Nolte, L.-P., and Reyes, M., “segmentation of brain tumor images based on integrated hierarchical classification and regularization,” in MICCAI BraTS Workshop. Nice: Miccai Society, 2012.

    Google Scholar 

  58. Huang, M., Yang, W., Wu, Y., Jiang, J., Chen, W., and Feng, Q., Brain tumor segmentation based on local independent projection-based classification. IEEE Transactions on Biomedical Engineering 61(10):2633–2645, 2014.

    PubMed  Google Scholar 

  59. D. Kwon, R. T. Shinohara, H. Akbari, and C. Davatzikos, “Combining generative models for multifocal glioma segmentation and registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2014, pp. 763–770.

  60. Zikic, D., Ioannou, Y., Brown, M., and Criminisi, A., Segmentation of brain tumor tissues with convolutional neural networks. Proceedings MICCAI-BRATS:36–39, 2014.

  61. Goetz, M., Weber, C., Bloecher, J., Stieltjes, B., Meinzer, H.-P., and Maier-Hein, K., Extremely randomized trees based brain tumor segmentation. Proceeding of BRATS challenge-MICCAI:006–011, 2014.

  62. D. Kwon, H. Akbari, X. Da, B. Gaonkar, and C. Davatzikos, “Multimodal brain tumor image segmentation using GLISTR,” MICCAI Brain Tumor Segmentation (BraTS) Challenge Manuscripts, pp. 18–19, 2014.

  63. Tustison, N. J., Shrinidhi, K., Wintermark, M., Durst, C. R., Kandel, B. M., Gee, J. C., Grossman, M. C., and Avants, B. B., Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2):209–225, 2015.

    PubMed  Google Scholar 

  64. H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo, “Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks,” arXiv preprint arXiv:1705.03820, 2017.

  65. Haeck, T., Maes, F., and Suetens, P., “ISLES challenge 2015: Automated model-based segmentation of ischemic stroke in MR images,” in International Workshop on Brainlesion: Glioma. Stroke and Traumatic Brain Injuries: Multiple Sclerosis, 2015, 246–253.

    Google Scholar 

Download references

Funding

This manuscript receives no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sharif.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest and all contribute equally in this work for results compilation and other technical support.

Ethical Approval

This work is based on publicly available datasets. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, J., Sharif, M., Gul, N. et al. Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning. J Med Syst 44, 32 (2020). https://doi.org/10.1007/s10916-019-1483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1483-2

Keywords

Navigation