Skip to main content
Log in

Quantitative Analysis of DCE-MRI and RESOLVE-DWI for Differentiating Nasopharyngeal Carcinoma from Nasopharyngeal Lymphoid Hyperplasia

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

To explore the ability of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) analysis and readout segmentation of long variable echo-trains diffusion weighted imaging (RESOLVE-DWI) to distinguish nasopharyngeal carcinoma (NPC) from nasopharyngeal lymphoid hyperplasia (NPLH). Twenty-five patients with NPC and 30 patients with NPLH were evaluated. Three quantitative DCE-MRI parameters (Ktrans, Kep and Ve) and the apparent diffusion coeffcient (ADC) of lesions were calculated. The two independent samples t test or Mann-Whitney U test was used to compare the parameters between NPC and NPLH group. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic ability for distinguishing NPC from NPLH. A P value less than 0.05 was considered statistically significant. The difference in Ktrans value between the NPC group and the NPLH group was statistically significant, and the value of the NPC group was larger than that of the NPLH group. There was no statistical difference in Kep and Ve between the two groups. The ADC value of NPC group was smaller than that of NPLH group, and the difference was statistically significant. ROC curve analysis showed that both Ktrans and ADC were effective in diagnosing NPC and the area under the curve (AUC) was 0.773 and 0.704, respectively. In addition, the combination of Ktrans and ADC demonstrated the obviously improved AUC of 0.884. DCE-MRI and RESOLVE-DWI are effective in differentiating NPC from NPLH, especially the combination of the two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun, X., Su, S., Chen, C., Han, F., Zhao, C., Xiao, W., Deng, X., Huang, S., Lin, C., and Lu, T., Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: An analysis of survival and treatment toxicities. Radiother Oncol 110(3):398–403, 2014. https://doi.org/10.1016/j.radonc.2013.10.020.

    Article  PubMed  Google Scholar 

  2. King, A. D., JKS, W., Ai, Q. Y., Chan, J. S. M., Lam, W. K. J., Tse, I. O. L. et al., Complementary roles of MRI and endoscopic examination in the early detection of nasopharyngeal carcinoma. Ann Oncol., 2019. https://doi.org/10.1093/annonc/mdz106.

  3. Amin, M. B. E. S., Greene, F. et al., AJCC Cancer staging manual, 8th. New York: Springer, 2016.

    Google Scholar 

  4. King, A. D., Vlantis, A. C., Yuen, T. W., Law, B. K., Bhatia, K. S., Zee, B. C., Woo, J. K., Chan, A. T., Chan, K. C., and Ahuja, A. T., Detection of nasopharyngeal carcinoma by MR imaging: Diagnostic accuracy of MRI compared with endoscopy and endoscopic biopsy based on long-term follow-up. AJNR Am J Neuroradiol 36(12):2380–2385, 2015. https://doi.org/10.3174/ajnr.A4456.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, M. L., Wei, X. E., Yu, M. M., and Li, W. B., Value of contrast-enhanced MRI in the differentiation between nasopharyngeal lymphoid hyperplasia and T1 stage nasopharyngeal carcinoma. Radiol Med 122(10):743–751, 2017. https://doi.org/10.1007/s11547-017-0785-z.

    Article  PubMed  Google Scholar 

  6. King, A. D., LYS, W., BKH, L., Bhatia, K. S., Woo, J. K. S., Ai, Q. Y. et al., MR imaging criteria for the detection of nasopharyngeal carcinoma: Discrimination of early-stage primary tumors from benign hyperplasia. AJNR Am J Neuroradiol 39(3):515–523, 2018. https://doi.org/10.3174/ajnr.A5493.

    Article  CAS  PubMed  Google Scholar 

  7. Cintra, M. B., Ricz, H., Mafee, M. F., and Dos, S. A. C., Magnetic resonance imaging: Dynamic contrast enhancement and diffusion-weighted imaging to identify malignant cervical lymph nodes. Radiol Bras 51(2):71–75, 2018. https://doi.org/10.1590/0100-3984.2017.0005.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zheng, D., Chen, Y., Chen, Y., Xu, L., Chen, W., Yao, Y., du, Z., Deng, X., and Chan, Q., Dynamic contrast-enhanced MRI of nasopharyngeal carcinoma: A preliminary study of the correlations between quantitative parameters and clinical stage. J Magn Reson Imaging 39(4):940–948, 2014. https://doi.org/10.1002/jmri.24249.

    Article  PubMed  Google Scholar 

  9. Zheng, D., Chen, Y., Liu, X., Chen, Y., Xu, L., Ren, W., Chen, W., and Chan, Q., Early response to chemoradiotherapy for nasopharyngeal carcinoma treatment: Value of dynamic contrast-enhanced 3.0 T MRI. J Magn Reson Imaging 41(6):1528–1540, 2015. https://doi.org/10.1002/jmri.24723.

    Article  PubMed  Google Scholar 

  10. Qin, Y., Yu, X., Hou, J., Hu, Y., Li, F., Wen, L. et al., Prognostic value of the pretreatment primary lesion quantitative dynamic contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma. Acad Radiol., 2019. https://doi.org/10.1016/j.acra.2019.01.021.

  11. Yu, X. P., Hou, J., Li, F. P., Xiang, W., Lu, Q., Hu, Y., and Wang, H., Quantitative dynamic contrast-enhanced and diffusion-weighted MRI for differentiation between nasopharyngeal carcinoma and lymphoma at the primary site. Dentomaxillofac Radiol 45(3):20150317, 2016. https://doi.org/10.1259/dmfr.20150317.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gencturk, M., Ozturk, K., Caicedo-Granados, E., Li, F., and Cayci, Z., Application of diffusion-weighted MR imaging with ADC measurement for distinguishing between the histopathological types of sinonasal neoplasms. Clin Imaging 55:76–82, 2019. https://doi.org/10.1016/j.clinimag.2019.02.004.

    Article  PubMed  Google Scholar 

  13. Jajodia, A., Aggarwal, D., Chaturvedi, A. K., Rao, A., Mahawar, V., Gairola, M., Agarwal, M., Goyal, S., Koyyala, V. P. B., Pasricha, S., and Tripathi, R., Value of diffusion MR imaging in differentiation of recurrent head and neck malignancies from post treatment changes. Oral Oncol 96:89–96, 2019. https://doi.org/10.1016/j.oraloncology.2019.06.037.

    Article  PubMed  Google Scholar 

  14. Koontz, N. A., and Wiggins, R. H., Differentiation of benign and malignant head and neck lesions with diffusion tensor imaging and DWI. AJR Am J Roentgenol 208(5):1110–1115, 2017. https://doi.org/10.2214/AJR.16.16486.

    Article  PubMed  Google Scholar 

  15. Kanmaz, L., and Karavas, E., The role of diffusion-weighted magnetic resonance imaging in the differentiation of head and neck masses. J Clin Med 7(6), 2018. https://doi.org/10.3390/jcm7060130.

  16. Song, C., Cheng, P., Cheng, J., Zhang, Y., Sun, M., Xie, S., and Zhang, X., Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI. Eur Radiol. 30(1):110–118, 2019. https://doi.org/10.1007/s00330-019-06343-0.

    Article  PubMed  Google Scholar 

  17. Ai, Q. Y., King, A. D., JSM, C., Chen, W., Chan, K. C. A., Woo, J. K. S. et al., Distinguishing early-stage nasopharyngeal carcinoma from benign hyperplasia using intravoxel incoherent motion diffusion-weighted MRI. Eur Radiol. 29(10):5627–5634, 2019. https://doi.org/10.1007/s00330-019-06133-8.

    Article  PubMed  Google Scholar 

  18. Fujima, N., Yoshida, D., Sakashita, T., Homma, A., Tsukahara, A., Tha, K. K., Kudo, K., and Shirato, H., Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: Assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn Reson Imaging 32(10):1206–1213, 2014. https://doi.org/10.1016/j.mri.2014.08.009.

    Article  PubMed  Google Scholar 

  19. Jia, Q. J., Zhang, S. X., Chen, W. B., Liang, L., Zhou, Z. G., Qiu, Q. H., Liu, Z. Y., Zeng, Q. X., and Liang, C. H., Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma. Eur Radiol 24(12):3076–3087, 2014. https://doi.org/10.1007/s00330-014-3343-2.

    Article  PubMed  Google Scholar 

  20. Huang, B., Wong, C. S., Whitcher, B., Kwong, D. L., Lai, V., Chan, Q., and Khong, P. L., Dynamic contrast-enhanced magnetic resonance imaging for characterising nasopharyngeal carcinoma: Comparison of semiquantitative and quantitative parameters and correlation with tumour stage. Eur Radiol 23(6):1495–1502, 2013. https://doi.org/10.1007/s00330-012-2740-7.

    Article  PubMed  Google Scholar 

  21. Türkbey, B., Thomasson, D., Pang, Y., Bernardo, M., and Choyke, P. L., The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol 16(3):186–192, 2010. https://doi.org/10.4261/1305-3825.DIR.2537-08.1.

    Article  PubMed  Google Scholar 

  22. Ma, Z. S., Wang, D. W., Sun, X. B., Shi, H., Pang, T., Dong, G. Q., and Zhang, C. Q., Quantitative analysis of 3-tesla magnetic resonance imaging in the differential diagnosis of breast lesions. Exp Ther Med 9(3):913–918, 2015. https://doi.org/10.3892/etm.2014.2154.

    Article  PubMed  Google Scholar 

  23. Gity, M., Parviz, S., Saligheh, R. H., Fathi Kazerooni, A., Shirali, E., Shakiba, M. et al., Differentiation of benign from malignant adnexal masses by dynamic contrast-enhanced MRI (DCE-MRI): Quantitative and semi-quantitative analysis at 3-tesla MRI. Asian Pac J Cancer Prev 20(4):1073–1079, 2019. https://doi.org/10.31557/APJCP.2019.20.4.1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, X. Z., Lv, K., Sheng, J. L., Yu, Y. X., Pang, P. P., Xu, M. S., and Wang, S. W., Application evaluation of DCE-MRI combined with quantitative analysis of DWI for the diagnosis of prostate cancer. Oncol Lett 17(3):3077–3084, 2019. https://doi.org/10.3892/ol.2019.9988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Porter, D. A., and Heidemann, R. M., High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 62(2):468–475, 2009. https://doi.org/10.1002/mrm.22024.

    Article  PubMed  Google Scholar 

  26. Koyasu, S., Iima, M., Umeoka, S., Morisawa, N., Porter, D. A., Ito, J., le Bihan, D., and Togashi, K., The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: Initial experience. Eur Radiol 24(12):3088–3096, 2014. https://doi.org/10.1007/s00330-014-3369-5.

    Article  PubMed  Google Scholar 

  27. Walter, S. S., Liu, W., Stemmer, A., Martirosian, P., Nikolaou, K., Notohamiprodjo, M., and Gatidis, S., Combination of integrated dynamic shimming and readout-segmented echo planar imaging for diffusion weighted MRI of the head and neck region at 3Tesla. Magn Reson Imaging 42:32–36, 2017. https://doi.org/10.1016/j.mri.2017.05.004.

    Article  PubMed  Google Scholar 

  28. Ma, G., Xu, X. Q., Hu, H., Su, G. Y., Shen, J., Shi, H. B., and Wu, F. Y., Utility of readout-segmented Echo-planar imaging-based diffusion kurtosis imaging for differentiating malignant from benign masses in head and neck region. Korean J Radiol 19(3):443–451, 2018. https://doi.org/10.3348/kjr.2018.19.3.443.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are grateful to all the doctors and nurses in Department of Radiology, Chongqing General Hospital.

Funding

This study was funded by: the medical research Key Program of the combination of Chongqing National health commission and Chongqing science and technology bureau, China (grant number 2019ZDXM010); the Basic and Frontier Research Project of Chongqing, China (grant number cstc2016jcyjA0294); the Medical Research Key Program of the National Health and Family Planning Commission of Chongqing, China (grant numbers 20141016, 2016ZDXM026); and the Scientific and Technological Innovation Key Program of Chongqing General Hospital, China (grant number 2016ZDXM03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Tang.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J.Y., Zhang, D., Huang, X.L. et al. Quantitative Analysis of DCE-MRI and RESOLVE-DWI for Differentiating Nasopharyngeal Carcinoma from Nasopharyngeal Lymphoid Hyperplasia. J Med Syst 44, 75 (2020). https://doi.org/10.1007/s10916-020-01549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01549-y

Keywords

Navigation