Skip to main content
Log in

Rician Denoising Based on Correlated Local Features LMMSE Approach

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this study we propose a novel correction scheme that filters Magnetic Resonance Images data, by using a modified Linear Minimum Mean Square Error (LMMSE) estimator which takes into account the joint information of the local features. A closed-form analytical solution for our estimator is presented and it proves to make the filtering process far simpler and faster than other estimation techniques that rely on iterative optimization scheme and require multiple data samples. An experimental validation of our correction scheme was carried out through large scale experiments using both clinical and synthetic MR images, artificially corrupted with rician noise of σ varying from 1 to 40. These noisy images were filtered using our proposed method against the classical LMMSE, the Non-Local Means filter and the Nonlocality-Reinforced Convolutional Neural Networks (NRCNN) techniques. The results show an outstanding performance of our proposed method, given the fact that from σ ≈ 12 onwards, the proposed method outperforms all other methods. Another attention-grabbing feature of our method is that its Structural Similarity does not vary sharply [0.87, 0.95] across the σ spectrum as the other three techniques, which implies that this method can work on a wider range of deteriorated images than the rest of the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aja-Fernandez S., Alberola-Lopez C., Westin C. F.: Noise and signal estimation in magnitude MRI and rician distributed images: A LMMSE approach. IEEE Trans. Image Process. 17: 1383–1398, 2008

    Article  Google Scholar 

  2. Baselice F., Ferraioli G., Pascazio V.: A 3D MRI denoising algorithm based on Bayesian theory. BioMedical Eng. 16: 1–19, 2017

    Google Scholar 

  3. Buades A., Coll B., Morel J. M.: A non-local algorithm for image denoising.. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 2. IEEE, 2005, pp 60–65

  4. Chen G., Wu Y., Shen D., Yap P. T. (2018) Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space. Med. Phys., 1–36

  5. Chen G., Wu Y., Shen D., Yap P. T.: Noise reduction in diffusion mri using non-local self-similar information in joint x- q space. Med. Image Anal. 53: 79–94, 2019

    Article  Google Scholar 

  6. Christa M. S., Nan-Kuei C.: Improving the accuracy, quality, and signal-to-noise ratio of MRI parametric mapping using Rician bias correction and parametric-contrast-matched principal component analysis (PCM-PCA). Yale J. Biol. Med. 91: 207–214, 2018

    Google Scholar 

  7. Cristovão C., Foi A., Katkovnik V., Egiazarian K.: Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Process. Lett. 25: 1216–1220, 2018

    Article  Google Scholar 

  8. Cruz C., Foi A., Katkovnik V., Egiazarian K.: Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Process. Lett. 25 (8): 1216–1220, 2018

    Article  Google Scholar 

  9. Filho A. S., Garrido C. E., dos Santos A. C., Murta L. O.: Enhancing quality in diffusion tensor imaging with anisotropic anomalous diffusion filter. Res. Biomed. Eng. 33: 247–258, 2017

    Article  Google Scholar 

  10. Gao G.: Characterization of SAR Clutter and its Applications to Land and Ocean Singapore: Springer, 2019, p 166

    Book  Google Scholar 

  11. Henkelman R. M.: Measurement of signal intensities in the presence of noise in MR images. Med. Phys. 12: 232–233, 1985

    Article  CAS  Google Scholar 

  12. Hongli L., Renfag W. (2019) Denoising 3D Magnetic Resonance Images based on low-rank tensor approximation with adaptive multirank estimation. IEEE Access

  13. https://brainweb.bic.mni.mcgill.ca/brainweb/: Access: 15th july 2020. web (2020)

  14. Hu K., Cheng Q., Li B., Gao X.: The complex data denoising in MR images based on the directional extension for the undecimated wavelet transform. Biomed. Signal Process. Control 39: 336–350, 2018

    Article  Google Scholar 

  15. Idier J., Collewet G. (2014) Properties of Fisher information for Rician distributions and consequences in MRI

  16. Idier J., Collewet G. (2015) Properties of fisher information for rician distributions and consequences in MRI. HAL archives-ouvertes, pp. 1–17

  17. Jiang Q., Moussaoui S., Idier J., Collewet G., Xu M. (2017) Majorization-minimization algorithms for maximum likelihood estimation of Magnetic Resonance Images. 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6

  18. Krishnamoorthy K. (2016) Handbook of statistical distributions with applications. CRC Press

  19. Marques J. P., Simonis F., Webb A. (2019) Low-field mri: An mr physics perspective: Low-field MRI. J. Magn. Reson. Imaging, 49

  20. Ndajah P., Kikuchi H., Yukawa M., Watanabe H., Muramatsu S.: An investigation on the quality of denoised images. Int. J. Circuits, Syst. Signal Process. 5 (4): 423–434, 2011

    Google Scholar 

  21. Reducindo I., Arce-Santana E., Campos D., Alba A.: Multimodal image registration by particle filtering: Evaluation and new results. IEEE Lat. Am. Trans. 12: 129–137, 2014

    Article  Google Scholar 

  22. Rice S. O.: Mathematical analysis of random noise, reprinted by wax n. ”Selected papers on noise and stochastic processes”. Bell Syst. Tech. J. 23 (24): 1954, 1944

    Google Scholar 

  23. Abhishek S., Chaurasia V.: A review on magnetic resonance images denoising techniques. Mach. Intell. Signal Anal. 748: 707–715, 2019

    Article  Google Scholar 

  24. Sijbers J., Dekker A. J.: Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magn. Reson. Med. 51: 586–594, 2004

    Article  CAS  Google Scholar 

  25. Sijbers J., Poot D., den Dekker A. J., Pintjenst W.: Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Phys. Med. Biol. 52: 1335–1348, 2007

    Article  Google Scholar 

  26. Sijbers J., Rajan J., Veraart J., Van Audekerke J.: Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magn. Reson. Imaging 30: 1512–1518, 2012

    Article  Google Scholar 

  27. Sijbers J., Veraart J., Dmitry S. N., Christiaens D., Adesaron B., Fieremans E. (2016) Denoising of diffusion MRI using random matrix theory. Neuroimage, 394–406

  28. Tristan-Vega A., García-Perez V., Aja-Fernandez S., Westin C. F.: Efficient and robust nonlocal means denoising of MR data based on salient features matching. Comput. Methods Programs Biomed. 105: 131–144, 2012

    Article  Google Scholar 

  29. Wang Z., Bovik A., Sheikh H. R., Simoncelli E.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process 13: 600–612, 2014

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their gratitude to the Instituto Politécnico Nacional of México and the CONACyT of México, for their support to this research work – project 240820.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Mújica-Vargas.

Ethics declarations

Each of the authors indicated above have contributed to, read and approved this manuscript.

Financial Disclosure

No authors have disclosures related to this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Appendix: : Mathematical procedures

Appendix: : Mathematical procedures

$$ \begin{array}{lll} B_{mse}(\hat{\theta}) & = E\Big[a^{T}(x-E(x))-(\theta-E(\theta))\Big]^{2}\\ &=E\Big[a^{T}(x-E(x))(x-E(x))^{T}a\Big]\\ &-E\Big[a^{T}(x-E(x))(\theta-E(\theta))\Big]\\ &-E\Big[(\theta-E(\theta))(x-E(x))^{T}a\Big]\\ &+ E [\Big(\theta-E(\theta)\Big)^{2}]=a^{T} C_{xx} a-a^{T} C_{x\theta} - C_{\theta x} a + C_{\theta\theta}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \begin{array}{lll} C_{AM} & = E\{(A-E\{A\})(M-E\{M\})^{T}\}\\ & = E\{(A-E\{A\})(A+n-E\{A+n\})^{T}\}\\ & = E\{(A-E\{A\})(A+n-E\{A\})^{T}\}, \text{ as } E\{n\}=0\\ & = E\{(A-\!E\{A\})(A - E\{A\})^{T}\} + E\{(A - E\{A\})n^{T}\}\\ & = C_{AA} + E\{(A-E\{A\})\}\cdot E\{n^{T}\}=C_{AA}. \end{array} \end{array} $$
$$ \begin{array}{lll} C_{MM} & = E\{(M-E\{M\})(M-E\{M\})^{T}\}\\ & = E\{(A+n-E\{A+n\})(A+n-E\{A+n\})^{T}\}\\ & = E\{(A-E\{A\}+n)(A-E\{A\}+n)^{T}\}\\ & = E\{(A-E\{A\})(A-E\{A\})^{T}+(A-E\{A\})\cdot n^{T}\\ & +n\cdot(A-E\{A\})^{T}+n\cdot n^{T}\}\\ & = C_{AA}+E\{(A-E\{A\})\}\cdot E\{n^{T}\}\\ & +E\{n\}\cdot E\{(A-E\{A\})^{T}\}+E\{n\cdot n^{T}\}\\ & = C_{AA}+{\sigma^{2}_{n}}\cdot I_{\Omega}, \end{array} $$
$$ \begin{array}{lll} C_{AA} & = E\{(A-E\{A\})(A-E\{A\})^{T}\}\\ & = E\{[X\cdot c-E\{X\cdot c\}][X\cdot c-E\{X\cdot c\}]^{T}\}\\ & = E\{[X\cdot c-X\cdot E\{c\}][X\cdot c-X\cdot E\{c\}]^{T}\}\\ & = E\{[X(c-E(c))][X(c-E(c))]^{T}\}\\ & = X\cdot E\{(c-E{c})(c-E{c})^{T}\}\cdot X^{T}\\ & = X\cdot C_{cc}\cdot X^{T}. \end{array} $$

For order 1:

$$ c_{0}=\bar u; c_{s}=\frac{\overline{s\cdot u}}{\bar{s^{2}}}; c_{t}=\frac{\overline{t\cdot u}}{\bar{t^{2}}}, $$

and then for order 2:

$$ c_{0}=\frac{(\overline{s^{2} t^{2}}^{2}-\overline{s^{4} t^{4}})\bar u+(\overline{s^{2} t^{4}}-\overline{s^{2} t^{2} t^{2}})\overline{s^{2} u}+(\overline{s^{4} t^{2}}-\overline{s^{2} t^{2} s^{2}})\overline{t^{2} u}}{(\overline {s^{4}}-\overline{s^{2} t^{2}})(2\bar{s^{2}}^{2}-\overline{s^{2} t^{2}}-\overline{s^{4}})}, $$
$$ c_{s}=\frac{\overline{s\cdot u}}{\overline{s^{2}}}; c_{t}=\frac{\overline{t\cdot u}}{\overline{t^{2}}}; c_{st}=\frac{\overline {s \cdot t\cdot u}}{\overline {s^{2} t^{2}}}; $$
$$ c_{ss}=\frac{(\overline{s^{2} t^{4}}-\overline{s^{2} t^{2} t^{2}})\bar u+(\overline{t^{2}}^{2}-\overline{t^{4}})\overline{s^{2} u}+(\overline{s^{2} t^{2}}-\overline{s^{2} t^{2}})\overline {t^{2} u}}{(\overline {s^{4}}-\overline{s^{2} t^{2}})(2\bar{s^{2}}^{2}-\overline{s^{2} t^{2}}-\overline{s^{4}})}, $$
$$ c_{tt}=\frac{(\overline{t^{2} s^{4}}-\overline{s^{2} t^{2} s^{2}})\bar u+(\overline{s^{2}}^{2}-\overline{s^{4}})\overline{t^{2} u}+(\overline{s^{2} t^{2}}-\overline {s^{2} t^{2}})\overline {s^{2} u}}{(\overline{s^{4}}-\overline{s^{2} t^{2}})(2\overline{s^{2}}^{2}-\overline{s^{2} t^{2}}-\overline{s^{4}})}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinani, J.M.V., Silva, A.R., Mújica-Vargas, D. et al. Rician Denoising Based on Correlated Local Features LMMSE Approach. J Med Syst 45, 40 (2021). https://doi.org/10.1007/s10916-020-01696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01696-2

Keywords

Navigation