Abstract
Non-invasive brain electrical stimulation (NIBES) techniques are progressively used for modulation of neuronal membrane potentials, which alters cortical excitability. The neuronal activity depends on position of channel locations for electrodes and the amount and direction of injected weak current through the target neurons area. In the present paper hybrid near infrared spectroscopy and electroencephalogram (NIRS-EEG) open access dataset for brain computer interface (BCI) has been used to find the best locations for NIBES. The percentage oxygen saturation has been calculated with the help of provided NIRS experimental dataset of changes in concentration of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) in thirty-six scalp site locations of twenty-eight healthy subjects. The variation in standard deviation have been calculated for given pre-processed EEG signals of thirty locations for same twenty-eight healthy subjects. The statistical one-way ANOVA method has been used to find out the best channels and locations which are having less variation in all motion artifacts. In this method, F value is calculated for these locations and those locations are selected which are significant at 99% confidence interval (P < 0.01). In this study, out of sixty-six locations sixteen best locations have been selected for non-invasive brain electrical stimulation. This pilot study has been used to find out the appropriate locations on the scalp sites to place the electrodes to provide weak direct current stimulation which are less affected by motion artifacts.
Similar content being viewed by others
References
Organization W.H., et al. (2018) Towards a dementia plan: a who guide
Wang H., Naghavi M., Allen C., Barber R.M., Bhutta Z.A., Carter A., Casey D.C., Charlson F.J., Chen A.Z., Coates M.M., et al: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388 (10053): 1459–1544, 2016
Pu D.-M., Gao D.-Q., Yuan Y.-B. (2014) A primal analysis system of brain neurons data. Sci. World J., 2014
Scarabino T., Salvolini U., Di Salle F., Duvernoy H., Rabishong P.: Atlas of Morphology and Functional Anatomy of the Brain Berlin: springer, 2006
Sharma G., Chowdhury S.R.: Design of nirs probe based on computational model to find out the optimal location for non-invasive brain stimulation. J. Med. Syst. 42 (12): 244, 2018
Perdue K.L., Diamond S.G.: T1 magnetic resonance imaging head segmentation for diffuse optical tomography and electroencephalography. J. Biomed. Opt. 19 (2): 026011, 2014
Knotkova H., Nitsche M.A., Bikson M., Woods A.J. (2019) Practical guide to transcranial direct current stimulation: principles, procedures and applications. Springer
Salgado-Ram J., Trejo-Macotela F., Simancas-Acevedo E., Robles-Camarillo D.: Transcranial direct current stimulation for the treatment of depressive disorders: a review of clinical applications. Curr. Psychiatr. Rev. 14 (4): 203–210, 2018
Sellaro R., Nitsche M.A., Colzato L.S.: The stimulated social brain: effects of transcranial direct current stimulation on social cognition. Ann. N. Y. Acad. Sci. 1369 (1): 218–239, 2016
Sharma G., Karwal O., Chowdhury S.R.: Non invasive brain stimulation study based on ischemic stroke patients.. In: 2019 41st Annual International Conference of the, IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2019, pp 1461–1464
Thiruppathy S., Muthukumar N.: Mild head injury: revisited. Acta neurochirurgica 146 (10): 1075–1083, 2004
Masson F., Thicoipe M., Mokni T., Aye P., Erny P., Dabadie P.: Epidemiology of traumatic comas: a prospective population-based study. Brain Injury 17 (4): 279–293, 2003
Golfinos J., Cooper P.: Skull fracture and post-traumatic cerebrospinal fluid fistula, head injury. In: (Cooper P.R., Golfinos J.G., Eds.) 4th edition., 2000
Organization W.H. (2006) Neurological disorders: public health challenges. World Health Organization
Kadosh R.C. (2014) The Stimulated Brain: Cognitive Enhancement using Non-Invasive Brain Stimulation. Elsevier
Khadka N., Woods A.J., Bikson M.: Transcranial direct current stimulation electrodes.. In: Practical Guide to Transcranial Direct Current Stimulation. Springer, 2019, pp 263–291
Paulus W.: Transcranial electrical stimulation (tes–tdcs; trns, tacs) methods. Neuropsychol. Rehab. 21 (5): 602–617, 2011
Nitsche M.A., Cohen L.G., Wassermann E.M., Priori A., Lang N., Antal A., Paulus W., Hummel F., Boggio P.S., Fregni F., et al: Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1 (3): 206–223, 2008
Nitsche M.A., Paulus W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 (3): 633–639, 2000
Nitsche M., Liebetanz D., Tergau F., Paulus W.: Modulation of cortical excitability by transcranial direct current stimulation. Nervenarzt 73 (4): 332–335, 2002
Wassermann E.M., Grafman J., Berry C., Hollnagel C., Wild K., Clark K., Hallett M.: Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol./Electromyogr. Motor Control 101 (5): 412–417, 1996
Sale M.V., Mattingley J.B., Zalesky A., Cocchi L.: Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 57: 187–198, 2015
Jackson M.P., Rahman A., Lafon B., Kronberg G., Ling D., Parra L.C., Bikson M.: Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127 (11): 3425–3454, 2016
Platz T.: Evidence-based guidelines and clinical pathways in stroke rehabilitation–an international perspective. Front. Neurol. 10: 200, 2019
Jindal U., Sood M., Dutta A., Chowdhury S.R.: Development of point of care testing device for neurovascular coupling from simultaneous recording of eeg and nirs during anodal transcranial direct current stimulation. IEEE J. Transl. Eng. Health Med. 3: 1–12, 2015
Mullins P.G., McGonigle D.J., O’Gorman R.L., Puts N.A., Vidyasagar R., Evans C.J., Edden R.A., et al.: Current practice in the use of mega-press spectroscopy for the detection of gaba. Neuroimage 86: 43–52, 2014
Erdogan E., Saydam S., Kurt A., Karamursel S.: Anodal transcranial direct current stimulation of the motor cortex in healthy volunteers. Neurophysiology 50 (2): 124–130, 2018
Pereira J.B., Junqué C., Bartrés-Faz D.M, M.rtí J., Sala-Llonch R., Compta Y., Falcón C., Vendrell P., Pascual-Leone Á., Valls-Solé J., et al: Modulation of verbal fluency networks by transcranial direct current stimulation (tdcs) in parkinson’s disease. Brain Stimul. 6 (1): 16–24, 2013
Bikson M., Datta A., Rahman A., Scaturro J.: Electrode montages for tdcs and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin. Neurophysiol.: Official J. Int. Fed. Clin. Neurophysiol. 121 (12): 1976, 2010
Kuo H.-I., Bikson M., Datta A., Minhas P., Paulus W., Kuo M.-F., Nitsche M.A.: Comparing cortical plasticity induced by conventional and high-definition 4× 1 ring tdcs: a neurophysiological study. Brain Stimul. 6 (4): 644–648, 2013
Sharma G., Chowdhury S.R.: Enhancement in focality of non-invasive brain stimulation through high definition (hd) anodal transcranial direct current stimulation (tdcs) techniques.. In: 2019 IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB). IEEE, 2019, pp 1–5
Villamar M.F., Volz M.S., Bikson M., Datta A., DaSilva A.F., Fregni F.: Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (hd-tdcs). JoVE (J. Visual. Exper.) 77: e50309, 2013
Sharma G., Arora Y., Chowdhury S.R.: A 4x1 high-definition transcranial direct current stimulation device for targeting cerebral micro vessels and functionality using nirs.. In: 2016 IEEE international symposium on nanoelectronic and information systems (iNIS). IEEE, 2016, pp 47–51
Jurcak V., Tsuzuki D., Dan I: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34 (4): 1600–1611, 2007
Machado A., Cai Z., Pellegrino G., Marcotte O., Vincent T., Lina J., Kobayashi E., Grova C.: Optimal positioning of optodes on the scalp for personalized functional near-infrared spectroscopy investigations. J. Neurosc. Methods 309: 91–108, 2018
Oliveira A.S., Schlink B.R., Hairston W.D., König P., Ferris D.P.: Induction and separation of motion artifacts in eeg data using a mobile phantom head device. J. Neural Eng. 13 (3): 036014, 2016
Shin J., von Lühmann A., Blankertz B., Kim D.-W., Jeong J., Hwang H.-J., Müller K.-R.: Open access dataset for eeg+ nirs single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 25 (10): 1735–1745, 2016
Field A. (2013) Discovering Statistics Using IBM SPSS Statistics. Sage
Guo Y., Wang Y., Marin T., Easley K., Patel R.M., Josephson C.D.: Statistical methods for characterizing transfusion-related changes in regional oxygenation using near-infrared spectroscopy (nirs) in preterm infants. Stat. Methods Med. Res. 28 (9): 2710–2723, 2019
Shin J., von Lühmann A., Blankertz B., Kim D.-W., Jeong J., Hwang H.-J., Müller K.-R.: Open access dataset for eeg + nirs single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 25 (10): 1735–1745, 2017
Bale G., Elwell C.E., Tachtsidis I.: From jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J. Biomed. Opt. 21 (9): 091307, 2016
Brasil-Neto J.P.: Learning, memory, and transcranial direct current stimulation. Front. Psychiatry 3: 80, 2012
Monti A., Ferrucci R., Fumagalli M., Mameli F., Cogiamanian F., Ardolino G., Priori A.: Transcranial direct current stimulation (tdcs) and language. J. Neurol. Neurosurg. Psychiatry 84 (8): 832–842, 2013
Martin D.M., Yeung K., Loo C.K.: Pre-treatment letter fluency performance predicts antidepressant response to transcranial direct current stimulation. J. Affect. Disorders 203: 130–135, 2016
Ruggiero F., Lavazza A., Vergari M., Priori A., Ferrucci R.: Transcranial direct current stimulation of the left temporal lobe modulates insight. Creativ. Res. J. 30 (2): 143–151, 2018
Nikolin S., Boonstra T.W., Loo C.K., Martin D.: Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PloS one 12 (8): e0181833, 2017
Lefaucheur J. -P., Antal A., Ayache S.S., Benninger D.H., Brunelin J., Cogiamanian F., Cotelli M., De Ridder D., Ferrucci R., Langguth B., et al: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tdcs). Clin. Neurophysiol. 128 (1): 56–92, 2017
Westwood S.J., Romani C.: Transcranial direct current stimulation (tdcs) modulation of picture naming and word reading: A meta-analysis of single session tdcs applied to healthy participants. Neuropsychologia 104: 234–249, 2017
Alix-Fages C., Romero-Arenas S., Castro-Alonso M., Colomer-Poveda D., Río-Rodriguez D., Jerez-Martínez A., Fernandez-del Olmo M., Márquez G.: Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production: a systematic review and meta-analysis. J. Clin. Med. 8 (4): 536, 2019
Schwartz T.H.: Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Currents 7 (4): 91–94, 2007
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
This study was funded by Indian Institute of Technology Mandi, Ministry of Electronics and Information Technology (MeitY) and Govt of India. The authors would like to thanks a NIRScout (NIRx GmbH, Berlin, and Germany) and BrainAmp EEG (Brain Products GmbH, Gilching, Germany) for provide open access dataset which was available for free download via: http://doc.ml.tu-berlin.de/hBCI for doing statistical analysis in this work.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Systems-Level Quality Improvement
Rights and permissions
About this article
Cite this article
Sharma, G., Chowdhury, S.R. Statistical Analysis to Find out the Optimal Locations for Non Invasive Brain Stimulation. J Med Syst 44, 85 (2020). https://doi.org/10.1007/s10916-020-1535-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-020-1535-7