Skip to main content
Log in

Adaptive Smooth Simulcast Protocol (ASSP) for Video Applications: Description and Performance Evaluation

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In this paper, we present Adaptive Smooth Simulcast Protocol (ASSP) for simulcast transmission of multimedia data over best-effort networks. ASSP is a new multiple-rate protocol that implements a single rate TCP-friendly protocol as the underlying congestion control mechanism for each simulcast stream. The key attributes of ASSP are: (a) TCP-friendly behavior, (b) adaptive per-stream transmission rates, (c) adaptive scalability to large sets of receivers and (d) smooth transmission rates that are suitable for multimedia applications. We evaluate the performance of ASSP under an integrated simulation environment which combines the measurements of both network and video performance metrics. We also compare ASSP against other proposed solutions and the results demonstrate that the performance of ASSP is significantly better than the tested solutions. Finally, ASSP is a practical solution with very low implementation complexity for video transmission over best-effort networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. The subscription level is the stream in which the receiver makes a join request.

  2. Coefficient of Variation (CoV) is the standard deviation divided by the mean.

References

  1. RFC 4654: On TCP-friendly multicast congestion control (TFMCC). In: Widmer, J., Handley, M. (eds.), August (2006)

  2. Yousefi’zadeh, H., Jafarkhani, H.: Achieving inter-receiver fairness utilizing layered media multicast control (LMMC). In: Proceedings of the IEEE International Conference on Communications, ICC 2004, vol. 2, pp. 1151–1155, Paris, France, June (2004)

  3. RFC 3550: RTP: a transport protocol for real-time applications. In: Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V. (eds.) July (2003)

  4. Bouras, C., Gkamas, A., Kioumourtzis, G.: Adaptive smooth simulcast protocol for multimedia transmission. In: The Fourteenth IEEE Symposium on Computers and Communications (ISCC09), Sousse, Tunisia, 5–8 July (2009)

  5. Bouras, C., Gkamas, A., Kioumourtzis, G.: Adaptive smooth multicast protocol for multimedia data transmission. In: 2008 International Symposium on Performance Evaluation of Computer and Telecommunication Systems—SPECTS 2008, Edinburgh, UK, 16–18 June (2008)

  6. Bouras, C., Gkamas, A., Kioumourtzis, G.: Comparison of single-rate multicast congestion control protocols vs. ASMP. In: 16th Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)—MASCOTS 2008, Baltimore, MD, USA, 8–10 Sept (2008)

  7. Rizzo, L.: pgmcc: A TCP-friendly single-rate multicast congestion control scheme. In: Proceedings of ACM SIGCOMM ‘00, Stockholm, Sweden, 28 Aug–1 Sept (2000)

  8. RFC 4605: Internet group management protocol (IGMP)/Multicast. In: Fenner, B. et al. (ed.) August (2006)

  9. Kwon, G.-I., Byers, J.: Smooth multirate multicast congestion control. In: Proceedings of IEEE INFOCOM, San Francisco USA, 30 March–1 April (2003)

  10. McCanne, S., Jacobson, V., Vetterli, M.: Receiver-driven layered multicast. In: Proceedings of ACM SIGCOMM, Stanford University, California, USA, 26–27 August (1996)

  11. Legout, A., Biersack, E.: PLM: fast convergence for cumulative layered multicast transmission schemes. In: Proceedings of ACM SIGMETRICS, Santa Clara, California, USA, 17–21 June (2000)

  12. Byers, J.W. et al.: FLID-DL congestion control for layered multicast. In: Proceedings of NGC, Stanford University, Palo Alto, California, USA, 8–10 November (2000)

  13. Puangpronpitag, S., Boyle, R., Djemame, K.: Performance evaluation of layered multicast congestion control protocols: FLIDDL vs. PLM. In: Proceedings of International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS 03), Montreal, Canada, July (2003)

  14. The UCB/LBNL network simulator, software online: http://www.isi.edu/nsnam/ns/

  15. RFC 5166, Floyd, S.: Metrics for the evaluation of congestion control mechanisms. Network Working Group, March (2008)

  16. Shi, S., Waldvogel, M.: A rate-based end-to-end multicast congestion control protocol. In: Proceedings of Fifth EEE Symposium on Computers and Communications (ISCC 2000), Antibes-Juan les Pins, France, 3–6 July (2000)

  17. Byers, J., Luby, M., Mitzenmacher, M.: Fine-grained layered multicast. Proc. INFOCOM 2001 2, 1143–1151 (2001)

    Google Scholar 

  18. Byers, J., Kwon, G.: STAIR: practical aimed multirate multicast congestion control. In: Proceedings of NGC, London UK, 7–9 November (2001)

  19. Li, X., Ammar, M., Paul, S.: Video multicast over the internet. IEEE Netw Mag 13(2), 46–60 (1999)

    Article  Google Scholar 

  20. Jiang, T., Zegura, E.W., Ammar, M.H.: Inter-receiver fair multicast communication over the Internet. In: Proceedings of NOSSDAV’99, AT&T Learning Center, Basking Ridge NJ, USA, 23–25 June (1999)

  21. Bouras, C., Gkamas, A.: SRAMT-S: A hybrid sender and receiver-based adaptation scheme for TCP friendly multicast transmission using simulcast approach. In: 1st IFIP Workshop on Internet Technologies, Applications and Social Impact (WITASI-02), Wroclaw, Poland, pp. 105–122, 10–11 October (2002)

  22. Pandhye, J., Kurose, J., Towsley, D., Koodli, R.: A model based TCP-friendly rate control protocol. In: Proceedings of International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV), Basking Ridge, NJ, USA, 23–25 June (1999)

  23. ITU-T Recommendation G.100/P.10 Amendment 1: New appendix. I—Definition of quality of experience (QoE). Jan (2007)

  24. ITU-T Recommendation P.910: Subjective video quality assessment methods for multimedia applications. April (2008)

  25. Rohaly, M. et.al.: Video quality experts group: current results and future directions. In: SPIE Visual Communications and Image Processing, Perth, Australia, vol. 4067, pp. 742–753, 21–23 June (2000)

  26. ITU-T Recommendation G.1080: Quality of experience requirements for IPTV services. Dec (2008)

  27. Riley, M.J., Richardson, I.E.G.: Digital Video Communications. Artech House, 685 Canton Street, Norwood (1997)

  28. ITU-R Recommendations BT.500-11. Methodology for the subjective assessment of the quality of television pictures (2002)

  29. Klaue, J., Rathke, B., Wolisz, A.: EvalVid—A framework for video transmission and quality evaluation. In: Proceedings of the 13th International Conference on Modeling, Techniques and Tools for Computer Performance Evaluation, Urbana, Illinois (2003)

  30. Lie, A., Klaue, J.: Evalvid-RA: trace driven simulation of rate adaptive MPEG-4 VBR Video. ACM/Springer Multimedia Systems Journal autumn (2007)

  31. FFmpeg audio/video conversion tool, http://sourceforge.net/projects/ffmpeg/ (information available online—visited 08/2009)

  32. Tionardi, L., Hartanto, F.: The use of cumulative inter-frame for adapting video transmission rate. In: Proceedings of TENCON, Bangalore, India, 15–17 October (2003)

  33. Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for resource allocation in shared systems. DEC Research Report TR-301, Tech. Rep., Sept (1984)

  34. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6: Joint Draft 11: Scalable Video Coding. Joint Video Team (JVT) of ISO/IEC MPEG&ITU-T VCEG, Document JVT-X201, Geneva, Switzerland, July (2007)

  35. Kim, T. Ammar, M. H.: A comparison of layering and stream replication video multicast schemes. In Proceedings of NOSSDAV’01, Port Jefferson, New York USA, 25–26 June (2001)

  36. de Cuetos, P., Saparilla, D., Ross, K.W.: Adaptive streaming of stored video in a TCP-friendly context: multiple versions or multiple layers. In: Proceedings of Packet Video Workshop, Apr (2001)

  37. Avramova, Z. et al.: Comparison of simulcast and scalable video coding in terms of the required capacity in an IPTV network. In: Proceedings of PV 2007, Lausanne, Switzerland, November (2007)

  38. Smooth Multirate Multicast Congestion Control, (information available online—visited 08/2009), on line: http://cs-people.bu.edu/guin/smcc.html

  39. Research Unit 6//Research Academic Computer Technology Institute activities on multimedia transmission (information available online—visited 08/2009), on line: http://ru6.cti.gr/ru6/ns_rtp_home.php

  40. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans Netw 8(2), 133–145 (2000)

    Article  Google Scholar 

  41. Liu, J., Li, B.: Optimal stream replication for video simulcasting. In: 10th IEEE International Conference on Network Protocols, Paris, France, 12–15 November (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Bouras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouras, C., Gkamas, A. & Kioumourtzis, G. Adaptive Smooth Simulcast Protocol (ASSP) for Video Applications: Description and Performance Evaluation. J Netw Syst Manage 19, 143–177 (2011). https://doi.org/10.1007/s10922-010-9159-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-010-9159-8

Keywords

Navigation