Abstract
Virtual Networks (VNs) offer a flexible and economic approach to deploy customer suited networks. However, defining how resources of a physical network are used to support VNs requirements is a NP-hard problem. For this reason, heuristics have been used on mapping of virtual networks. Although heuristics do not ensure the optimal solution, they implement fast solutions and showed satisfactory results. This work presents a modeling of the node and link allocation problem using Distributed Constraint Optimization Problem (DCOP) with factor graphs, which is a formalism widely used in real distributed optimization problems. In our approach, we use the max-sum algorithm to solve the DCOP. Correctness criteria for this approach are discussed and verifications are conducted through model checking.









Similar content being viewed by others
Notes
The mathematical symbol\(\backslash\)(backslash) means complement of sets. For example, A\(\backslash\)B means: the set that contains all elements of A that does not belong to B. For example: {1,2,3,4}\(\backslash\)3,4,5,6} = {1,2}.
References
Fischer, A., Botero, J., Beck, M., De Meer, H., Hesselbach, X.: Virtual Network Embedding: A Survey. Communications Surveys Tutorials, IEEE PP(99), 1 (2013). doi:10.1109/SURV.2013.013013.00155
Beck, M.T., Fischer, A., de Meer, H., Botero, J., Hesselbach, X.: A distributed, parallel, and generic virtual network embedding framework. In: IEEE International Conference on Communications (ICC), 2013 (2013), pp. 3471–3475. doi:10.1109/ICC.2013.6655087
Beck, M.T., Fischer, A., Botero, J.F., Linnhoff-Popien, C., de Meer, H.: Distributed and scalable embedding of virtual networks. J. Netw. Comput. Appl. 56(C), 124 (2015). doi:10.1016/j.jnca.2015.06.012
Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2 (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008), AAMAS ’08, pp. 639–646. http://dl.acm.org/citation.cfm?id=1402298.1402313
Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2 (International Foundation for Autonomous Agents and Multiagent Systems, 2008), pp. 639–646
Petcu, A., Faltings, B.: DPOP: A Scalable Method for Multiagent Constraint Optimization. In: IJCAI 05 (Edinburgh, Scotland, 2005), pp. 266–271
Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1), 149 (2005)
Mailler, R., Lesser, V.R.: Asynchronous partial overlay: a new algorithm for solving distributed constraint satisfaction problems. J. Artif. Int. Res. 25(1), 529 (2006). http://dl.acm.org/citation.cfm?id=1622543.1622558
Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: International Joint Conference on Artificial Intelligence, vol. 19 (Lawrence Erlbaum Associates LTD, 2005), vol. 19, p. 266
Houidi, I., Louati, W., Zeghlache, D.: Distributed Virtual Network Mapping Algorithm. In: IEEE International Conference on Communications, 2008. ICC ’08. (2008), pp. 5634–5640. doi:10.1109/ICC.2008.1056
Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised coordination via the max-sum algorithm. Artif. Intell. 175(2), 730 (2011). doi:10.1016/j.artint.2010.11.001
Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination of mobile sensors using the max-sum algorithm. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence (Morgan Kaufmann Publishers Inc., 2009), pp. 299–304
Zivan, R., Peled, H.: Max/Min-sum Distributed Constraint Optimization Through Value Propagation on an Alternating DAG. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1 (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2012), AAMAS ’12, pp. 265–272. http://dl.acm.org/citation.cfm?id=2343576.2343614
Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn. Addison-Wesley Professional, Boston (2003)
Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279 (1997). doi:10.1109/32.588521
Botero, J., Hesselbach, X., Fischer, A., Meer, H.: Optimal mapping of virtual networks with hidden hops. Telecommun. Syst. 51(4), 273 (2012). doi:10.1007/s11235-011-9437-0
Chowdhury, M., Rahman, M.R., Boutaba, R.: ViNEYard: Virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw. 20(1), 206 (2012). doi:10.1109/TNET.2011.2159308
Nogueira, J., Melo, M., Carapinha, J., Sargento, S.: Virtual Network Mapping into Heterogeneous Substrate Networks. In: Proceedings of the 2011 IEEE Symposium on Computers and Communications (IEEE Computer Society, Washington, DC, USA, 2011), ISCC ’11, pp. 438–444. doi:10.1109/ISCC.2011.5983876
Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. (TOPLAS) 5(1), 66 (1983)
Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453 (1975)
Fischer, A., Botero, J.F., Beck, M.T., De Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Commun. Surv. Tutor. 15(4), 1888–1906 (2013)
Chowdhury, M., Samuel, F., Boutaba, R.: PolyViNE: policy-based virtual network embedding across multiple domains. In: Proceedings of the Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures (ACM, New York, NY, USA, 2010), VISA ’10, pp. 49–56. doi:10.1145/1851399.1851408
Zhang, M., Wu, C., Jiang, M., Yang, Q.: Mapping multicast service-oriented virtual networks with delay and delay variation constraints. In: IEEE Global Telecommunications Conference (GLOBECOM 2010), 2010 (IEEE, 2010), pp. 1–5
Inführ, J., Raidl, G.R.: Introducing the virtual network mapping problem with delay, routing and location constraints. In: Network Optimization (Springer, 2011), pp. 105–117
Yang, Y., Chen, S.z., Li, X., Wang, Y.: Rmap: An algorithm of virtual network resilience mapping. In: 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 (IEEE, 2011), pp. 1–4
Belbekkouche, A., Hasan, M.M., Karmouch, A.: Resource discovery and allocation in network virtualization. IEEE Commun. Surv. Tutor. 14(4), 1114 (2012)
Yeoh, W.: Speeding up distributed constraint optimization search algorithms. Ph.D. thesis, University of Southern California (2010)
Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1), 55 (2005)
Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distributed algorithms for DCOP: a graphical-game-based approach. In: ISCA PDCS (2004), pp. 432–439
Pearce, J.P.: Solution sets for DCOPs and graphical games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, 2006), pp. 577–584
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gularte, A.R., Mendizabal, O.M., Barbosa, R.M. et al. Node and Link Allocation in Network Virtualization Based on Distributed Constraint Optimization. J Netw Syst Manage 26, 127–146 (2018). https://doi.org/10.1007/s10922-017-9410-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10922-017-9410-7