Skip to main content

Advertisement

Log in

Optimized Hexagon-Based Deployment for Large-Scale Ubiquitous Sensor Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Ubiquitous Sensor Network describes an application platform comprised of intelligently networked sensors deployed over a large area, supporting multiple application scenarios. On one hand, at the user-end, storing and managing the large amount of heterogeneous data generated by the network is a daunting task. On the other hand, at the network-end, ensuring network connectivity and longevity in a dynamically changing network environment, while trying to provide context-aware application data to the end-users are very challenging for the resource constrained sensor network. While cloud computing offers a cost-effective solution for storage of the large volume of data generated by the underlying heterogeneous network, an equally elegant solution does not exist on the network interface to provide application-aware data. In this paper, we propose the use of cognitive nodes (CNs) in the underlying sensor network to provide intelligent information processing and knowledge-based services to the end-users. We identify tools and techniques to implement the cognitive functionality and formulate a strategy for the deployment of CNs in the underlying sensor network to ensure a high probability of successful data reception among communicating nodes. From Matlab simulations, we were able to verify that in a network with randomly deployed sensor nodes, CNs can be strategically deployed at pre-determined positions, to deliver application-aware data that satisfies the end-user’s quality of information requirements, even at high application payloads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. ITU-T technology watch briefing report series, No. 4. Ubiquitous Sensor Networks (2008)

  2. Al-Turjman, F.: Information-centric sensor networks for cognitive IoT: an overview. Ann. Telecommun. J. 72(1), 3–18 (2017)

    Article  Google Scholar 

  3. Stojmenović, I., Olariu, S.: Data-centric protocols for wireless sensor networks. In: Stojmenovic, I. (ed.) Handbook of Sensor Networks, pp. 417–456. Wiley, Hoboken (2005)

    Chapter  Google Scholar 

  4. Hasan, M.Z., Al-Turjman, F., Al-Rizzo, H.: Evaluation of a duty-cycled protocol for TDMA-based wireless sensor networks. In: Proceedings of the International Wireless Communications and Mobile Computing Conference, pp. 964–969. Paphos (2016)

  5. Oteafy, S.: A framework for heterogeneous sensing in big sensed data. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6. Washington, DC (2016)

  6. Oteafy, S., Hassanein, H.: Resilient IoT architectures over dynamic sensor networks with adaptive components. IEEE Internet Things J. 4(99), 1 (2017)

    Google Scholar 

  7. Al-Fagih, A., Al-Turjman, F., Alsalih, W., Hassanein, H.: A priced public sensing framework for heterogeneous IoT architectures. IEEE Trans. Emerg. Top. Comput. 1(1), 133–147 (2013)

    Article  Google Scholar 

  8. Al-Turjman, F., Alfagih, A., Alsalih, W., Hassanein, H.: A delay-tolerant framework for integrated RSNs in IoT. Comput. Commun. J. 36(9), 998–1010 (2013)

    Article  Google Scholar 

  9. Alfagih, A., Al-Turjman, F., Hassanein, H.: Ubiquitous robust data delivery for integrated RSNs in IoT. In: Proceedings of the IEEE International Global Communications Conference (GLOBECOM’12), pp. 298–303. Anaheim (2012)

  10. Zhang, P., Yan, Z., Sun, H.: A novel architecture based on cloud computing for wireless sensor network. In: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE) (2013)

  11. Kurschl, W., Beer, W.: Combining cloud computing and wireless sensor networks. In: Proceedings of the 11th International Conference on Information Integration and Web-based Applications and Services (iiWAS’09), pp. 512–518. ACM, New York (2009)

  12. Yun, Z., Bai, X., Xuan, D., Lai, T.H., Jia, W.: Optimal deployment patterns for full coverage and k-connectivity (k ≤ 6) wireless sensor networks. IEEE/ACM Trans. Netw. (TON) 18(3), 934–947 (2010)

    Article  Google Scholar 

  13. Cheng, P., Chuah, C.N., Liu, X.: Energy-aware node placement in wireless sensor networks. In: Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, vol. 5, pp. 3210–3214. IEEE (2004)

  14. Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor networks. In: INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3, pp. 1976–1984 (2005)

  15. Al-Turjman, F.M., Al-Fagih, A.E., Hassanein, H.S., Ibnkahla, M.: Deploying fault-tolerant grid-based wireless sensor networks for environmental applications. In: Proceedings of the 2010 IEEE 35th Conference on Local Computer Networks (LCN), pp. 715–722 (2010)

  16. Tran-Thanh, L., Levendovszky, J.: A novel reliability based routing protocol for power aware communications in wireless sensor networks. In: Proceedings of the 2009 IEEE Conference on Wireless Communications and Networking Conference, pp. 2308–2313 (2009)

  17. Tufail, A.: Reliable latency-aware routing for clustered WSNs. Int. J. Distrib. Sens. Netw. 8(3), 681273 (2012)

    Article  Google Scholar 

  18. ZigBee Specifications. [Online]. http://www.zigbee.org. ZigBee Document 053474r17 (2008)

  19. Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. J. Wirel Netw. 14(3), 347–355 (2008)

    Article  Google Scholar 

  20. Han, X., Cao, X., Lloyd, E.L., Shen, C.C.: Fault-tolerant relay node placement in heterogeneous wireless sensor networks. IEEE Trans. Mob. Comput. 9(5), 643–656 (2010)

    Article  Google Scholar 

  21. Lloyd, E.L., Xue, G.: Relay node placement in wireless sensor networks. IEEE Trans. Comput. 56(1), 134–138 (2007)

    Article  MathSciNet  Google Scholar 

  22. Xu, K., Hassanein, H., Takahara, G., Wang, Q.: Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Trans. Mob. Comput. 9(2), 145–159 (2010)

    Article  Google Scholar 

  23. Al-Turjman, F., Hassanein, H., Ibnkahla, M.: Optimized relay placement to federate wireless sensor networks in environmental applications. In: Proceedings of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC), 2011, pp. 2040–2045 (2011)

  24. Li, M., Liu, Y.: Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sen. Netw. 5(2), 10 (2009)

    Article  MathSciNet  Google Scholar 

  25. Al-Turjman, F.: Hybrid approach for mobile couriers election in smart-cities. In: Proceedings of the IEEE Local Computer Networks (LCN), pp. 1–4. Dubai, UAE (2016)

  26. Al-Turjman, F.: Cognitive routing protocol for disaster-inspired internet of things. Future Gener. Comput. Syst. (2017). doi:10.1016/j.future.2017.03.014

    Google Scholar 

  27. Wang, F., Wang, D., Liu, J.: Traffic-aware relay node deployment: maximizing lifetime for data collection wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(8), 1415–1423 (2011)

    Article  Google Scholar 

  28. Hasan, M.Z., Al-Turjman, F.: Evaluation of a duty-cycled asynchronous X-MAC protocol for vehicular sensor networks. EURASIP J. Wirel. Commun. Netw. (2017). doi:10.1186/s13638-017-0882-7

    Google Scholar 

  29. Reddy, Y.B., Bullmaster, C.: Application of game theory for cross-layer design in cognitive wireless networks. In: Proceedings of the 6th International Conference Information Technology: New Generations, ITNG, pp. 510–515 (2009)

  30. Reznik, L., Von Pless, G.: Neural networks for cognitive sensor networks. In: Proceedings of the IEEE International Joint Conference Neural Networks (IJCNN), pp. 1235–1241 (2008)

  31. Bisdikian, C., Kaplan, L.M., Srivastava, M.B.: On the quality of information in sensor networks. ACM Trans. Sens. Netw. 9(4), 48 (2013)

    Article  Google Scholar 

  32. Singh, G., et al.: Learning data delivery paths in QoI-aware information-centric sensor networks. IEEE Internet Things J. 3(4), 572–580 (2016)

    Article  Google Scholar 

  33. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

    Article  Google Scholar 

  34. Al-Turjman, F., Hassanein, H.: Enhanced data delivery framework for dynamic information-centric networks (ICNs). In: Proceedings of the IEEE Local Computer Networks (LCN), pp. 831–838. Sydney (2013)

  35. Krishnamachari, B., Estrin, D., Wicker, S.: Modelling datacentric routing in wireless sensor networks. IEEE Infocom 2, 39–44 (2002)

    Google Scholar 

  36. Al-Turjman, F.: Cognitive caching for the future fog networking. Pervasive Mob. Comput. (2017). doi:10.1016/j.pmcj.2017.06.004

    Google Scholar 

  37. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: IEEE Proceedings of the Hawaii International Conference System Sciences, pp. 1–10 (2000)

  38. Al-Turjman, F.: Cognitive-node architecture and a deployment strategy for the future sensor networks. Mob. Netw. Appl. (2017). doi:10.1007/s11036-017-0891-0

    Google Scholar 

  39. Zhao, Q., Tong, L., Chen, Y.: Energy-aware data-centric MAC for application-specific sensor networks. In: Proceedings of the 13th Workshop on Statistical Signal Processing, 2005 IEEE/SP, pp. 1238–1243 (2005)

  40. Vijay, G., Ibnkahla, M.: CCAWSN: a cognitive communication architecture for wireless sensor networks. In: Proceedings of the 26th Biennial Symposium on Communications (QBSC), pp. 132–137 (2012)

  41. Vijay, G., Bdira, E.B., Ibnkahla, M.: Cognition in wireless sensor networks: a perspective. IEEE Sens. J. 11(3), 582–592 (2011)

    Article  Google Scholar 

  42. Hasan, M.Z., Al-Rizzo, H., Al-Turjman, F.: A survey on multipath routing protocols for QoS assurances in real-time multimedia wireless sensor networks. IEEE Commun. Surv. Tutor. (2017). doi:10.1109/COMST.2017.2661201

    Google Scholar 

  43. Lithium Based Batteries. [Online]. http://batteryuniversity.com/learn/article/lithium_based_batteries

  44. Zuniga, M., Krishnamachari, B.: Analyzing the transitional region in low power wireless links. In: Sensor and Ad Hoc Communications and Networks, First Annual IEEE Communications Society Conference on, IEEE SECON, pp. 517–526 (2004)

  45. Al-Turjman, F.: Price-based data delivery framework for dynamic and pervasive IoT. Pervasive Mob. Comput. J. (2017). doi:10.1016/j.pmcj.2017.05.001

    Google Scholar 

  46. Bölöni, L., Turgut, D.: Value of information based scheduling of cloud computing resources. Future Gener. Comput. Syst. J. 71, 212–220 (2017)

    Article  Google Scholar 

  47. Turgut, D., Bölöni, L.: Value of information and cost of privacy in the internet of things. IEEE Commun. Mag. 1, 9–52 (2017)

    Google Scholar 

  48. Al-Turjman, F., Hassanein, H., Ibnkahla, M.: Towards prolonged lifetime for deployed WSNs in outdoor environment monitoring. Ad Hoc Netw. 24(A), 172–185 (2015)

    Article  Google Scholar 

  49. Al-Turjman, F., Hassanein, H., Ibnkahla, M.: Quantifying connectivity in wireless sensor networks with grid-based deployments. J. Netw. Comput. Appl. 36(1), 368–377 (2013)

    Article  Google Scholar 

  50. Zayani, M.-H., Gauthier, V.: Usage of IEEE 802.15.4 MAC–PHY Model. http://www-public.it-sudparis.eu/~gauthier/Tools/802_15_4_MAC_PHY_Usage.pdf

  51. Zayani, M.-H., Gauthier, V., Zeghlache, D.: A joint model for IEEE 802.15.4 physical and medium access control layers. In: Proceedings of IEEE The 7th International Wireless Communications and Mobile Computing Conference (IWCMC) (2011)

  52. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. ACM (2000)

  53. Hasan, M.Z., Al-Turjman, F., Al-Rizzo, H.: Optimized multi-constrained quality-of-service multipath routing approach for multimedia sensor networks. IEEE Sens. J. 17(7), 2298–2309 (2017)

    Article  Google Scholar 

  54. Park, P., Di Marco, P., Soldati, P., Fischione, C., Johansson, K.H.: A generalized Markov chain model for effective analysis of slotted IEEE 802.15.4. In: Proceedings of the 6th International Conference on Mobile Adhoc and Sensor Systems, 2009. MASS ‘09. IEEE, vol. 130, no. 139, pp. 12–15 (2009)

Download references

Acknowledgements

This work is supported by TUBITAK project no. 115E198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Al-Turjman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Turjman, F. Optimized Hexagon-Based Deployment for Large-Scale Ubiquitous Sensor Networks. J Netw Syst Manage 26, 255–283 (2018). https://doi.org/10.1007/s10922-017-9415-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-017-9415-2

Keywords