Skip to main content
Log in

Lightweight Boolean Network Tomography Based on Partition of Managed Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Boolean network tomography is a promising technique to achieve fault management in networks where the existing IP-based troubleshooting mechanism cannot be used. Aiming to apply Boolean network tomography to fault management, a variety of heuristic methods for configuring monitoring trails and paths have been proposed to localize link failures in managed networks. However, these existing heuristic methods must be executed in a centralized server that administers the entire managed network and the methods present scalability problems when applied to large-scale managed networks. Thus, this paper proposes a novel scheme for achieving lightweight Boolean network tomography in a decentralized manner. The proposed scheme partitions the managed network into multiple management areas and localizes link failures independently within each area. This paper also proposes a heuristic network partition method with the aim of efficiently implementing the proposed scheme. The effectiveness of the proposed scheme is verified using typical fault management scenarios where all single-link failures and all dual-link failures are localized by the least number of monitoring paths on predetermined routes. Simulation results show that the proposed scheme can greatly reduce the computational load on the fault management server when Boolean network tomography is deployed in large-scale managed networks. Furthermore, the degradation of optimality in the proposed scheme can be mitigated in comparison with a centralized scheme that utilizes heuristics to reduce the computational load on the centralized server.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maeda, M.W.: Management and control of transparent optical networks. IEEE JSAC 16(7), 1008–1023 (1998)

    Google Scholar 

  2. Mas, C., Tomkos, I., Tonguz, O.K.: Failure location algorithm for transparent optical networks. IEEE JSAC 23(8), 1508–1519 (2005)

    Google Scholar 

  3. Barford, P., Duffield, N., Ron, A., Sommers, J.: Network performance anomaly detection and localization. In: Proc. of IEEE Inforcom ’09, pp. 1377–1385 (2009)

  4. Adams, A., Bu, T., Caceres, R., Duffield, N.G., Friedman, T., Horowitz, J., Presti, F.L., Moon, S.B., Paxson, V., Towsley, D.: The use of end-to-end multicast measurements for characterizing internal network behavior. IEEE Commun. Mag. 38(5), 152–159 (2000)

    Article  Google Scholar 

  5. Presti, F.L., Duffield, N.G., Horowitz, J., Towsley, D.: Multicast-based inference of network-internal delay distributions. IEEE/ACM Trans. Netw. 10(6), 761–775 (2002)

    Article  MATH  Google Scholar 

  6. Zheng, Q., Cao, G.: Minimizing probing cost and achieving identifiability in probe based network link monitoring. IEEE Trans. Comput. 62(3), 510–523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Monitor placement for maximal identifiability in network tomography. In: Proc. IEEE Infocom 2014 (2014)

  8. Duffield, N.: Network tomography of binary network performance characteristics. IEEE Trans. Inf. Theory 52(12), 5373–5388 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma, L., He, T., Swami, A., Towsley, D., Leung, KK., Lowe, J.: Node failure localization via network tomography. In: Proc. ACM IMC’14, pp. 195–208 (2014)

  10. Ahuja, S.S., Ramasubramanian, S., Krunz, M.: SRLG failure localization in optical networks. IEEE/ACM Trans. Netw. 19(4), 989–999 (2011)

    Article  Google Scholar 

  11. Wu, B., Ho, P.-H., Yeung, K.L., Tapolcai, J., Mouftah, H.T.: Optical layer monitoring schemes for fast link localization in all-optical networks. IEEE Commun. Surv. Tutor. 13(1), 114–125 (2011)

    Article  Google Scholar 

  12. Tapolcai, J., Ho, P.-H., Ronyai, L., Babarczi, P., Wu, B.: Failure localization for shared risk link groups in all-optical mesh networks using monitoring trails. IEEE/OSA JLT 29(10), 1597–1606 (2011)

    Google Scholar 

  13. Ogino, N., Nakamura, H.: All-optical monitoring path computation based on lower bounds of required number of paths. In: Proc. of IEEE ICC 2011. ONS-P-5 (2011)

  14. Ogino, N., Yokota, H.: Heuristic computation method for all-optical monitoring trails terminated at specified nodes. IEEE/OSA JLT 32(3), 467–482 (2014)

    Google Scholar 

  15. Lumetta, S.S., Medard, M.: Towards a deeper understanding of link restoration algorithms for mesh networks. Proc. IEEE Inforcom. 2001, 367–375 (2001)

    Google Scholar 

  16. Ogino, N., Kitahara, T., Arakawa, S., Hasegawa, G., Murata, M.: Decentralized Boolean network tomography based on network partitioning. In: Proc. IEEE/IFIP NOMS 2016 (2016)

  17. Li, X., Djukic, P., Zhang, H.: Zoning for hierarchical network optimization in software defined networks. In: Proc. IEEE/IFIP NOMS 2014 (2014)

  18. Yu, J.Y., Chong, P.H.J.: A survey of clustering schemes for mobile ad hoc networks. IEEE Commun. Surv. Tutor. 7(1), 32–48 (2005)

    Article  Google Scholar 

  19. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 30, 2826–2841 (2007)

    Article  Google Scholar 

  20. Elsner, U.: Graph partitioning—a survey. Technische Universitat Chemnitz (1997)

  21. McSherry, F.: Spectral partitioning of random graphs. In: Proc. IEEE FOCS’01, pp. 529–537 (2001)

  22. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proc. ACM/IEEE Conference on Supercomputing (1995)

  23. Tabak, E.K., Cambazoglu, B.B., Aykanat, C.: Improving the performance of independent task assignment heuristics MinMin, MaxMin and Sufferage. IEEE Trans. Parallel Distrib. Syst. 25(5), 1244–1256 (2014)

    Article  Google Scholar 

  24. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin Heidelberg (2001)

    MATH  Google Scholar 

  25. Bollobas, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  26. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Nakajima, President and CEO, and Dr. Otani, Executive Director of KDDI Research, Inc., for their encouragement throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagao Ogino.

Additional information

This paper is revised and based on [16], which has appeared in the proceedings of the 2016 IEEE/IFIP Network Operations and Management Symposium, ©2016 IEEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogino, N., Kitahara, T., Arakawa, S. et al. Lightweight Boolean Network Tomography Based on Partition of Managed Networks. J Netw Syst Manage 26, 284–313 (2018). https://doi.org/10.1007/s10922-017-9416-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-017-9416-1

Keywords

Navigation