Skip to main content

Advertisement

Log in

CCN Energy-Delay Aware Cache Management Using Quantized Hopfield

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Internet infrastructure is going to be re-designed as a core network layer, shifting from hosts to contents. To this end, content centric networking (CCN) as one of the most effective architectures has been proposed with significant features of in-network caching to open new possibilities for energy efficiency in content dissemination. However in energy-efficient CCN, less popular contents are cached near the origin server, and therefore in delay sensitive applications with less popularity, it leads to dropping delayed chunks, increasing energy waste, and degrading the quality of service (QoS). In the present paper, the energy consumption in CCN while being aware of QoS consideration in terms of imposed delay is minimized. The minimization is performed through integer linear programming by considering most of the energy consuming components. However, since this problem is NP-hard, a quantized Hopfield neural network with an augmented Lagrange multiplier method (MEDCCN-QHN) is proposed to derive the solution. The numerical results show that the MEDCCN-QHN achieves to better delay profile compared to the optimal energy-efficient algorithm, and near-optimal energy consumption. Moreover, the method is fast due to its parallel execution capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, pp. 1–12. ACM (2009)

  2. Fang, C., Yu, F.R., Huang, T., Liu, J., Liu, Y.: A survey of green information-centric networking: research issues and challenges. IEEE Commun. Surv. Tutor. 17(3), 1455–1472 (2015)

    Article  Google Scholar 

  3. Fang, C., Yu, F.R., Huang, T., Liu, J., Liu, Y.: An energy-efficient distributed in-network caching scheme for green content-centric networks. Comput. Netw. 78, 119–129 (2015)

    Article  Google Scholar 

  4. Koponen, T., Chawla, M., Chun, B.G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.: A data-oriented (and beyond) network architecture. In: ACM SIGCOMM Computer Communication Review, vol. 37, 181–192. ACM (2007)

  5. Ain, M., Trossen, D., Nikander, P., Tarkoma, S., Visala, K., Rimey, K., Burbridge, T., Rajahalme, J., Tuononen, J., Jokela, P., et al.: Architecture definition, component descriptions, and requirements. Deliverable, PSIRP 7th FP EU-funded project (2009)

  6. Imai, S., Leibnitz, K., Murata, M.: Energy-aware cache management for content-centric networking. In: 2013 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 1623–1629. IEEE (2013)

  7. Raghavan, B., Ma, J.: The energy and emergy of the internet. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks, p. 9. ACM (2011)

  8. Walker, M.: Surfing the Green Wave in Telecom. Ovum-RHK, London (2008)

    Google Scholar 

  9. Choi, N., Guan, K., Kilper, D.C., Atkinson, G.: In-network caching effect on optimal energy consumption in content-centric networking. In: 2012 IEEE International Conference on Communications (ICC), pp. 2889–2894. IEEE (2012)

  10. Lee, U., Rimac, I., Kilper, D., Hilt, V.: Toward energy-efficient content dissemination. IEEE Netw. 25(2), 14–19 (2011)

    Article  Google Scholar 

  11. Vasilakos, A.V., Li, Z., Simon, G., You, W.: Information centric network: research challenges and opportunities. J. Netw. Comput. Appl. 52, 1–10 (2015)

    Article  Google Scholar 

  12. Guan, K., Atkinson, G., Kilper, D.C., Gulsen, E.: On the energy efficiency of content delivery architectures. In: 2011 IEEE International Conference on Communications Workshops (ICC), pp. 1–6. IEEE (2011)

  13. Llorca, J., Tulino, A.M., Guan, K., Esteban, J., Varvello, M., Choi, N., Kilper, D.: Dynamic in-network caching for energy efficient content delivery. In: 2013 Proceedings IEEE INFOCOM, pp. 245–249. IEEE (2013)

  14. Roger, B.M.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)

    MATH  Google Scholar 

  15. Li, C., Liu, W., Wang, L., Li, M., Okamura, K.: Energy-efficient quality of service aware forwarding scheme for content-centric networking. J. Netw. Comput. Appl. 58, 241–254 (2015)

    Article  Google Scholar 

  16. Pham, T.M., Minoux, M., Fdida, S., Pilarski, M.: Optimization of content caching in content-centric network. http://hal.upmc.fr/hal-01016470v2 (2017)

  17. Baliga, J., Ayre, R., Hinton, K., Tucker, R.S.: Architectures for energy-efficient IPTV networks. In: Optical Fiber Communication Conference, p. OThQ5. Optical Society of America (2009)

  18. Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., Blefari-Melazzi, N.: Transport-layer issues in information centric networks. In: Proceedings of the Second Edition of the ICN Workshop on Information-Centric Networking, pp. 19–24. ACM (2012)

  19. Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A study of the energy consumption characteristics of cryptographic algorithms and security protocols. IEEE Trans. Mob. Comput. 5(2), 128–143 (2006)

    Article  Google Scholar 

  20. Kramer, S.: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 116, 405 (1994)

    Article  Google Scholar 

  21. Wen, U., Lan, K., Shih, H.: A review of hopfield neural networks for solving mathematical programming problems. Eur. J. Oper. Res. 198(3), 675–687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Joya, G., Atencia, M., Sandoval, F.: Hopfield neural networks for optimization: study of the different dynamics. Neurocomputing 43(1), 219–237 (2002)

    Article  MATH  Google Scholar 

  24. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    MATH  Google Scholar 

  25. Matsuda, S.: Quantized hopfield networks for integer programming. Syst. Comput. Jpn. 30(6), 1–12 (1999)

    Article  Google Scholar 

  26. Li, S.Z.: Improving convergence and solution quality of hopfield-type neural networks with augmented Lagrange multipliers. IEEE Trans. Neural Netw. 7(6), 1507–1516 (1996)

    Article  Google Scholar 

  27. Fricker, C., Robert, P., Roberts, J., Sbihi, N.: Impact of traffic mix on caching performance in a content-centric network. In: 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 310–315. IEEE (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Movahhedinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, F., Movahhedinia, N. CCN Energy-Delay Aware Cache Management Using Quantized Hopfield. J Netw Syst Manage 26, 1058–1078 (2018). https://doi.org/10.1007/s10922-018-9453-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-018-9453-4

Keywords