Abstract
The analysis of mobile phone data can help carriers to improve the way they deal with unusual workloads imposed by large-scale events. This paper analyzes human mobility and the resulting dynamics in the network workload caused by three different types of large-scale events: a major soccer match, a rock concert, and a New Year’s Eve celebration, which took place in a large Brazilian city. Our analysis is based on the characterization of records of mobile phone calls made around the time and place of each event. That is, human mobility and network workload are analyzed in terms of the number of mobile phone calls, their inter-arrival and inter-departure times, and their durations. We use heat maps to visually analyze the spatio-temporal dynamics of the movement patterns of the participants of the large-scale event. The results obtained can be helpful to improve the understanding of human mobility caused by large-scale events. Such results could also provide valuable insights for network managers into effective capacity management and planning strategies. We also present PrediTraf, an application built to help the cellphone carriers plan their infrastructure on large-scale events.











Similar content being viewed by others
Notes
People who live or work in the same area of the event are also considered attendees. We understand that the neighborhood of an event place should also be included in the carriers capacity management.
An official stadium of the 2014 FIFA World Cup and Rio 2016 Olympics.
References
Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loh, J.M., Martonosi, M., Rowland, J., Urbanek, S., Varshavsky, A., Volinsky, C.: Human mobility characterization from cellular network data. Commun. ACM 56(1), 74–82 (2013)
Blondel, V.D., Decuyper, A., Krings, G.: A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015)
Hess, A., Hummel, K.A., Gansterer, W.N., Haring, G.: Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Comput. Surv. 48(3), 38:1–38:39 (2015)
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
Soper, D.: Is human mobility tracking a good idea? Commun. ACM 55(4), 35–37 (2012)
Silveira, L.M., de Almeida, J.M., Marques-Neto, H.T., Sarraute, C., Ziviani, A.: Mobhet: predicting human mobility using heterogeneous data sources. Comput. Commun. 95, 54–68 (2016)
Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.-L.: Uncovering individual and collective human dynamics from mobile phone records. J. Phys. A Math. Theor. 41(22), 224015 (2008)
Simonite, T.: Mobile data: a gold mine for telcos. MIT Technology Review (2010)
Eagle, N., Pentland, A., Lazer, D.: Infering social network structure using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)
González, M.C., Barabási, A.-L.: Complex networks: from data to models. Nat. Phys. 3(4), 224–225 (2007)
Asgari, F., Gauthier, V., Becker, M.: A survey on human mobility and its applications. arXiv preprint arXiv:1307.0814 (2013)
Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and pois. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 186–194, ACM (2012)
Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015)
Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. 106(51), 21484–21489 (2009)
Brockmann, D., David, V., Gallardo, A.M.: Human mobility and spatial disease dynamics. Rev. Nonlinear Dyn. Complex. 2, 1–24 (2009)
Jiang, S., Ferreira, J., Jr., Gonzalez, M.C.: Discovering urban spatial–temporal structure from human activity patterns. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp ’12, (New York, NY, USA), pp. 95–102, ACM (2012)
Sun, Y., Fan, H., Li, M., Zipf, A.: Identifying the city center using human travel flows generated from location-based social networking data. Environ. Plan. B Plan. Des. 43(3), 480–498 (2016)
Toole, J.L., Ulm, M., González, M.C., Bauer, D.: Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, pp. 1–8, ACM (2012)
Bagrow, J.P., Wang, D., Barabasi, A.-L.: Collective response of human populations to large-scale emergencies. PLoS ONE 6(3), e17680 (2011)
Sarraute, C., Brea, J., Burroni, J., Wehmuth, K., Ziviani, A., Alvarez Hamelin, J.I.: Social events in a time-varying mobile phone graph. In: Simposio Argentino de GRANdes DAtos (AGRANDA 2015)-JAIIO 44 (Rosario, 2015) (2015)
Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabsi, A.-L., Wang, D.: Scaling identity connects human mobility and social interactions. Proc. Natl. Acad. Sci. (PNAS) 113, 7047 (2016)
Leo, Y., Busson, A., Sarraute, C., Fleury, E.: Call detail records to characterize usages and mobility events of phone users. Comput. Commun. 95, 43–53 (2016)
Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in peoples lives from cellular network data. In: International Conference on Pervasive Computing, pp. 133–151, Springer (2011)
Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)
Bleicher, A.: The on-demand olympics. IEEE Spectr. 49, 9–10 (2012)
Calabrese, F., Ferrari, L., Blondel, V.D.: Urban sensing using mobile phone network data: a survey of research. ACM Comput. Surv. (CSUR) 47(2), 25 (2015)
Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Venkataraman, S., Wang, J.: A first look at cellular network performance during crowded events. In: ACM SIGMETRICS Performance Evaluation Review, vol. 41, pp. 17–28, ACM (2013)
Erman, J., Ramakrishnan, K.K.: Understanding the super-sized traffic of the super bowl. In Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 353–360, ACM (2013)
Small, C., Becker, R., Cáceres, R., Urbanek, S.: Earthquakes, hurricanes, and mobile communication patterns in the New York metro area: collective behavior during extreme events. arXiv preprint arXiv:1504.02463 (2015)
Xavier, F.H.Z., Silveira, L.M., Almeida, J.M.D., Ziviani, A., Malab, C.H.S., Marques-Neto, H.T.: Analyzing the workload dynamics of a mobile phone network in large scale events. In: Proceedings of the First Workshop on Urban Networking, pp. 37–42, ACM (2012)
Xavier, F.H.Z., Silveira, L., Almeida, J., Malab, C., Ziviani, A., Marques-Neto, H.T.: Understanding human mobility due to large-scale events. In: Third International Conference on the Analysis of Mobile Phone Datasets (NetMob) (2013)
Calabrese, F., Pereira, F.C., DiLorenzo, G., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: International Conference on Pervasive Computing, pp. 22–37 (2010)
Batty, M., DeSyllas, J., Duxbury, E.: The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. Int. J. Geogr. Inf. Sci. 17(7), 673–697 (2003)
Dong, Z.-B., Song, G.-J., Xie, K.-Q., Wang, J.-Y.: An experimental study of large-scale mobile social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1175–1176, ACM (2009)
Chang, Y.-J., Liu, H.-H., Chou, L.-D., Chen, Y.-W., Shin, H.-Y.: A general architecture of mobile social network services. In: International Conference on Convergence Information Technology, 2007, pp. 151–156, IEEE (2007)
Xu, Y., González, M.C.: Collective benefits in traffic during mega events via the use of information technologies. J. R. Soc. Interface 14, 2 (2017)
Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)
Gillespie, C.S.: Fitting heavy tailed distributions: the poweRlaw package. arXiv preprint (2014). arXiv:1407.3492
Xavier, W.Z., Marques-Neto, H.T., Xavier, F.H.Z.: Visualizing and analyzing georeferenced workloads of mobile networks. In: Workshop on Data Analytics for Mobile Networking - DAMN! in Conjuction with IEEE PerCom (2017)
Acknowledgements
This work is supported by FIP PUC Minas (Fundo de Incentivo à Pesquisa of Pontifical Catholic University of Minas Gerais), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), InWeb (MCT CNPq 5738712008-6), INCT-CiD (MCTIC CNPq 465.560/2014-8), and the STIC-AmSud Program (Project 18-STIC-07).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marques-Neto, H.T., Xavier, F.H.Z., Xavier, W.Z. et al. Understanding Human Mobility and Workload Dynamics Due to Different Large-Scale Events Using Mobile Phone Data. J Netw Syst Manage 26, 1079–1100 (2018). https://doi.org/10.1007/s10922-018-9454-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10922-018-9454-3