Skip to main content
Log in

A Holistic Framework for Virtual Network Migration to Enhance Embedding Ratios in Network Virtualization Environments

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Network virtualization is a promising technology for overcoming Internet ossification by enabling multiple Virtual Networks (VNs) to coexist on a shared substrate network. One critical aspect in NV environments is the capability of operators to allocate resources in the substrate network to support VNs in an optimal manner. This is known as Virtual Network Embedding (VNE). In the same context, online VN migration is the process meant to re-allocate components of a VN in real-time and seamlessly to the end-users. Although progress has been made to address VN migration, there has been little investigation on integral migration approaches assessed under different VN environment conditions. The main contribution of this paper is a VN migration framework that addresses the online VN migration problem holistically, namely considering different aspects that affect the efficiency of resource (re)allocations and the VNE acceptance ratios, such as migration policies, trigger conditions, and the CPU capacity requirements for Intermediate Substrate Nodes. An evaluation methodology is developed for analyzing the performance of the proposed framework on substrate infrastructures of different sizes and densities. Extensive software simulations on substrate networks of varying size (50 to 250 nodes) and link density (0.06 to 0.6) discover the migration-oriented parameters that contribute to enhance VNE up to 18.7%. We also compare the framework performance against two state-of-the-art mechanisms that improve online VNE while looking for VNE solutions and observed acceptance ratio enhancements up to 3× higher when using our framework on a physical network with 100 nodes and a density of 0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fischer, A., Botero, J.F., Beck, M.T.: Virtual network embedding: a survey. Surv. Tutor. 15, 1888–1906 (2013)

    Article  Google Scholar 

  2. Chowdhury, N.M.M.K., Rahman, M.R., Boutaba, R.: Virtual network embedding with coordinated node and link mapping. In: IEEE INFOCOM 2009—The 28th Conference on Computer Communications, pp. 783–791. IEEE, New York (2009)

  3. Chowdhury, N.M.M.K., Boutaba, R.: Network virtualization: state of the art and research challenges. IEEE Commun. Mag. 47, 20–26 (2009)

    Article  Google Scholar 

  4. Alshaer, H.: An overview of network virtualization and cloud network as a service. Int. J. Netw. Manag. 25, 1–30 (2015)

    Article  Google Scholar 

  5. Hsu, W.-H., Shieh, Y.-P., Wang, C.-H., Yeh, S.-C.: Virtual network mapping through path splitting and migration. In: 2012 26th International Conference on Advanced Information Networking and Applications Workshops, pp. 1095–1100. IEEE, Nwe York (2012)

  6. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support for path splitting and migration. SIGCOMM Comput. Commun. Rev. 38, 17 (2008)

    Article  Google Scholar 

  7. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to virtual network components. In: Proceedings IEEE INFOCOM 2006. 25th IEEE International Conference on Computer Communications, pp. 1–12. IEEE, New York (2006)

  8. Shahin, A.A.: Memetic multi-objective particle swarm optimization-based energy-aware virtual network embedding. Int. J. Adv. Comput. Appl. 6, (2015)

  9. Wang, Y., Keller, E., Biskeborn, B., van der Merwe, J., Rexford, J.: Virtual routers on the move. SIGCOMM Comput. Commun. Rev. 38, 231 (2008)

    Article  Google Scholar 

  10. Lo, S., Ammar, M., Zegura, E.: Design and analysis of schedules for virtual network migration. IFIP Netw. Conf. 2013, 1–9 (2013)

    Google Scholar 

  11. Melo, M., Sargento, S., Carapinha, J.: Optimal virtual network migration: a step closer for seamless resource mobility. J. Netw. Comput. Appl. 64, 124–136 (2016)

    Article  Google Scholar 

  12. Xiao, A., Wang, Y., Meng, L., Qiu, X., Li, W.: Topology-aware remapping to survive virtual networks against substrate node failures. In: Network Operations and Management Symposium (APNOMS), 2013 15th Asia-Pacific, pp. 1–6. (2013)

  13. Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of virtual machines including local persistent state. In: Proceedings of the 3rd International Conference on Virtual Execution Environments—VEE’07, p. 169. ACM Press, New York, New York, USA (2007)

  14. Melo, M., Carapinha, J., Sargento, S., Killat, U., Timm-Giel, A.: A Re-optimization Approach for Virtual Network Embedding. In: Timm-Giel, A., Strassner, J., Agüero, R., Sargento, S., and Pentikousis, K. (eds.) Mob. Netw. Manag. pp. 271–283. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

  15. Aguilar-Fuster, C., Zangiabady, M., Zapata-Lara, J., Rubio-Loyola, J.: Online virtual network embedding based on virtual links’ rate requirements. IEEE Trans. Netw. Serv. Manag. 15, 1630–1644 (2018)

    Article  Google Scholar 

  16. Herker, S., Khan, A., An, X.: Survey on survivable virtual network embedding problem and solutions. In: The 9th International Conference on Networking and Services (ICNS), pp. 99–104 (2013)

  17. Hou, W., Ning, Z., Guo, L., Chen, Z., Obaidat, M.S.: Novel framework of risk-aware virtual network embedding in optical data center networks. IEEE Syst. J. 12, 2473–2482 (2018)

    Article  Google Scholar 

  18. Zhang, P., Yao, H., Liu, Y.: Virtual network embedding based on the degree and clustering coefficient information. IEEE Access. 4, 8572–8580 (2016)

    Article  Google Scholar 

  19. Caggiani Luizelli, M., Richter Bays, L., Salete Buriol, L., Pilla Barcellos, M., Paschoal Gaspary, L.: How physical network topologies affect virtual network embedding quality: a characterization study based on ISP and datacenter networks. J. Netw. Comput. Appl. 70, 1–16 (2016)

    Article  Google Scholar 

  20. Rubio-Loyola, J., Aguilar-Fuster, C., Toscano-Pulido, G., Mijumbi, R., Serrat-Fernandez, J.: Enhancing metaheuristic-based online embedding in network virtualization environments. IEEE Trans. Netw. Serv. Manag. 15, 200–216 (2018)

    Article  Google Scholar 

  21. Chowdhury, S.R., Ahmed, R., Shahriar, N., Khan, A., Boutaba, R., Mitra, J., Liu, L.: ReViNE: Reallocation of Virtual Network Embedding to eliminate substrate bottlenecks. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 116–124. IEEE, New York (2017)

  22. Tran, P.N., Timm-Giel, A.: Reconfiguration of virtual network mapping considering service disruption. In: 2013 IEEE International Conference on Communications (ICC), pp. 3487–3492. IEEE, New York (2013)

  23. Tarutani, Y., Ohsita, Y., Murata, M.: Virtual network reconfiguration for reducing energy consumption in optical data centers. J. Opt. Commun. Netw. 6, 925 (2014)

    Article  Google Scholar 

  24. Qiang, Z., Qiang, W., Sheng, F., Wu, L.: Heuristic survivable virtual network embedding based on node migration and link remapping. In: 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference, pp. 181–185. IEEE, New York (2014)

  25. Zhao, S., Ji, X., Cheng, G., Hu, H.: Dynamic migration of virtual links. In: 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 12–16. IEEE, New York (2017)

  26. Gao, L., Rouskas, G.N.: Virtual network reconfiguration with load balancing and migration cost considerations. In: IEEE INFOCOM 2018—IEEE Conference on Computer Communications, pp. 2303–2311. IEEE, New York (2018)

  27. Araújo, S.M.A., Guidoni, D.L., de Souza, F.S.H., Mateus, G.R.: Managing virtual network embedding through reconfiguration and expansion. Simulation 95, 1113–1125 (2019)

    Article  Google Scholar 

  28. Deric, N., Varasteh, A., Basta, A., Blenk, A., Pries, R., Jarschel, M., Kellerer, W.: Coupling VNF orchestration and SDN virtual network reconfiguration. In: 2019 International Conference on Networked Systems (NetSys), pp. 1–3. IEEE, New York (2019)

  29. Kellerer, W., Kalmbach, P., Blenk, A., Basta, A., Reisslein, M., Schmid, S.: Adaptable and data-driven softwarized networks: review, opportunities, and challenges. Proc. IEEE 107, 711–731 (2019)

    Article  Google Scholar 

  30. Al-Tam, F., Correia, N.: On load balancing via switch migration in software-defined networking. IEEE Access. 7, 95998–96010 (2019)

    Article  Google Scholar 

  31. AL-Tam, F., Ashrafi, M., Correia, N.: On Controllers’ Utilization in Software-defined Networking by Switch Migration. In: Sucasas, V., Mantas, G., and Althunibat, S. (eds.) In: Broadband Communications, Networks, and Systems: 9th International EAI Conference, Broadnets 2018, Faro, Portugal, September 19–20, 2018, Proceedings. pp. 52–61. Springer International Publishing, Cham (2019)

  32. Charmet, F., Blanc G., and Kiennert, C.,: Optimizing resource allocation for secure SDN-based virtual network migration. In: 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 2019, pp. 1–10 (2019)

  33. Guan, Y., Zong, Y., Liu, Y., Guo, L., Ning, Z., Rodrigues, J.J.P.C.: Virtual network embedding supporting user mobility in 5G metro/access networks. In: ICC 2019—2019 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE, New York (2019)

  34. Zhang, Z., Cao, H., Su, S., Li, W.: Energy aware virtual network migration. IEEE Trans. Cloud Comput. 1–1 (2020)

  35. Phuong Nga Tran, Casucci, L., Timm-Giel, A.: Optimal mapping of virtual networks considering reactive reconfiguration. In: 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), pp. 35–40. IEEE, New York (2012)

  36. Farooq Butt, N., Chowdhury, M., Boutaba, R.: Topology-awareness and reoptimization mechanism for virtual network embedding. In: Crovella, M., Feeney, L.M., Rubenstein, D., Raghavan, S.V. (eds.) Networking 2010, pp. 27–39. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  37. Masti, S.B., Raghavan, S.V.: Simulated annealing algorithm for virtual network reconfiguration. In: Proceedings of the 8th Euro-NF Conference on Next Generation Internet NGI 2012, pp. 95–102. IEEE, New York (2012)

  38. Zangiabady, M., Garcia-Robledo, A., Gorricho, J., Serrat-Fernandez, J., Rubio-Loyola, J.: Self-adaptive Online Virtual Network Migration in Network Virtualization Environments. Trans. Emerg. Telecommun. Technol. 30, 1–29 (2019)

    Google Scholar 

  39. Zangiabady, M., Rubio-Loyola, J.: Towards a QoS-Oriented Migration Management Approach for Virtualized Networks. In: Badonnel, R., Koch, R., Pras, A., Drašar, M., Stiller, B. (eds.) Management and Security in the Age of Hyperconnectivity, pp. 57–61. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  40. Zangiabady, M., Aguilar-Fuster, C., Rubio-Loyola, J.: A virtual network migration approach and analysis for enhanced online virtual network embedding. In: 2016 12th International Conference on Network and Service Management (CNSM), pp. 324–329. IEEE, New York (2016)

  41. Black, D., Fang, L., Kreeger, L., Napierala, M.: Problem statement: overlays for network virtualization. RFC Editor (2014)

  42. Ando, T., Shimokuni, O., Asano, K.: Network virtualization for large-scale data centers. Fujitsu. Sci. Tech. J. 49, 292–299 (2013)

    Google Scholar 

  43. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with Lattice. In: 2010 IEEE/IFIP Network Operations and Management Symposium Workshops, pp. 239–246. IEEE, New York (2010)

  44. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: A survey. Comput. Netw. 57, 2093–2115 (2013)

    Article  Google Scholar 

  45. Chang, X.L., Mi, X.M., Muppala, J.K.: Performance evaluation of artificial intelligence algorithms for virtual network embedding. Eng. Appl. Artif. Intell. 26, 2540–2550 (2013)

    Article  Google Scholar 

  46. Zhang, Z., Cheng, X., Su, S., Wang, Y., Shuang, K., Luo, Y.: A unified enhanced particle swarm optimization-based virtual network embedding algorithm. Int. J. Commun. Syst. 26, 1054–1073 (2013)

    Article  Google Scholar 

  47. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)

    Article  Google Scholar 

  48. Fajjari, I., Aitsaadi, N., Pujolle, G., Zimmermann, H.: VNE-AC: Virtual network embedding algorithm based on ant colony metaheuristic. In: 2011 IEEE International Conference on Communications (ICC). pp. 1–6. IEEE, New York (2011)

  49. Richter Bays, L., Ruas Oliveira, R.S., Buriol, L., Barcellos, M., Paschoal, Gaspary L.: A toolset for efficient privacy-oriented virtual network embedding and its instantiation on SDN/OpenFlow-based substrates. Comput Commun. 82, 13–27 (2016)

    Article  Google Scholar 

  50. Fajjari, I., Aitsaadi, N., Pujolle, G., Zimmermann, H.: VNR algorithm: a greedy approach for virtual networks reconfigurations. In: 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011, pp. 1–6. IEEE, New York (2011)

  51. Smith, D.K., Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. J. Oper. Res. Soc. 45, 1340 (1994)

    Article  Google Scholar 

  52. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213). pp. 834–843. IEEE, New York (2001)

  53. Raddwan, B., Al-Wagih, K., Al-Baltah, I.A., Alrshah, M.A., Al-Maqri, M.A.: Path mapping approach for network function virtualization resource allocation with network function decomposition support. Symmetry. 11, 1173 (2019)

    Article  Google Scholar 

  54. Jiang, Y., Lan, J., Wang, Z., Deng, Y.: Embedding and reconfiguration algorithms for service aggregation in network virtualization. Int. J. Commun. Syst. 29, 33–46 (2016)

    Article  Google Scholar 

  55. Hartman, A.: Software and hardware testing using combinatorial covering suites. In: Golumbic, M.C., Hartman, I.B.-A. (eds.) Graph Theory, Combinatorics and Algorithms, pp. 237–266. Springer-Verlag, New York (2005)

    Chapter  Google Scholar 

  56. National Institute of Standards, (NIST), T.: Covering Array Tables

  57. Hogg, R., Elliot, T.: Probability and statistical inference. (1988)

  58. Bland, J.M., Altman, D.G.: Multiple significance tests: the Bonferroni method. BMJ 310, 170 (1995)

    Article  Google Scholar 

  59. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965)

    Article  MathSciNet  Google Scholar 

  60. Shong, N.: Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data, (2010)

  61. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675 (1937)

    Article  Google Scholar 

  62. Landa Becerra, R., Coello, C.A.C.: Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 195, 4303–4322 (2006)

    Article  MathSciNet  Google Scholar 

  63. Han, P., Guo, L., Liu, Y.: Virtual network embedding in SDN/NFV based fiber-wireless access network. In: 2016 International Conference on Software Networking (ICSN), pp. 1–5. IEEE, New York (2016)

  64. Jain, R., Paul, S.: Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun. Mag. 51, 24–31 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council of Research and Technology (CONACYT) through Grant FONCICYT/272278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Zangiabady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zangiabady, M., Garcia-Robledo, A., Aguilar-Fuster, C. et al. A Holistic Framework for Virtual Network Migration to Enhance Embedding Ratios in Network Virtualization Environments. J Netw Syst Manage 28, 502–552 (2020). https://doi.org/10.1007/s10922-020-09536-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09536-x

Keywords

Navigation